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Abstract

To study how governments can improve the quality of patent screening, we develop
an integrative framework incorporating four main policy instruments: patent office
examination, pre- and post-grant fees, and challenges in the courts. We show
that examination and pre-grant fees are complementary, and that pre-grant fees
screen more effectively than post-grant fees. Simulations of the model, calibrated
on U.S. patent and litigation data, indicate that patenting is socially excessive
and the patent office does not effectively weed out low-quality applications. We
quantify the welfare effects of counterfactual policy reforms and show how they
depend on the quality of the courts.
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1 Introduction

The patent system is one of the key instruments governments use to provide innovation

incentives. However, there is growing concern among academic scholars and policy-

makers that patent rights are becoming an impediment, rather than an incentive, to

innovation. Critics claim that the proliferation of patents, and the fragmentation of

ownership among firms, raise the transaction costs of doing R&D, and expose firms

to hold-up through patent litigation (Heller and Eisenberg, 1998; Lemley and Shapiro,

2005; Bessen and Maskin, 2009). These dangers have been prominently voiced in public

debates on patent policy (Federal Trade Commission, 2011; The Economist, 2015) as
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well as recent Supreme Court decisions in the United States (eBay Inc. v. MercEx-

change, 547 U.S. 338, 2006), and have resulted in the Leahy-Smith America Invents

Act of 2011, the most significant statutory change to the U.S. patent system in half a

century.

Critics claim that these problems arise in large part from ineffective patent office

screening, granting patents to obvious inventions that do not represent a substantial

inventive step, especially but not only in new areas such as business methods and

software. This view is widely held and buttressed by anecdotes of egregious cases (Jaffe

and Lerner, 2004), but there is very little direct evidence on the extent or the sources

of the patent-quality problem.1 Whatever the source of the problem, in the presence of

costly and probabilistic review by courts, weak patents – with low probability of being

upheld as valid – may end up being strong (Farrell and Shapiro, 2008). This can create

greater opportunity for rent-extraction by owners of weak patents.

There is widespread criticism about low-quality patents and the need to make

screening more effective. But how best to achieve this goal? The economic theory

literature has typically focused more on the design of patent rights, such as optimal

length and breadth (Scotchmer, 1999; Cornelli and Schankerman, 1999; Hopenhayn

and Mitchell, 2000), but recently economists have begun to study the impact of patent

screening. Schuett (2013a, 2013b) studies how patent examination intensity, examiner

incentives, and application fees affect ex ante choice of research projects by inventors,

while Kou, Rey and Wang (2013) study the impact of the non-obviousness threshold

for patenting on project selection.2

Legal scholars have written extensively on ways to improve patent screening, in-

cluding the use of external peer review (Noveck, 2006), the appropriate standard and

application of the non-obviousness criterion (Eisenberg, 2004; Dreyfuss, 2008), and

weakening the presumption of validity and evidentiary standards for invalidation in the

courts (Lichtman and Lemley, 2007). Some scholars have argued that it may be ratio-

nal for the patent office not to screen too rigorously, and that the remaining burden of

screening should be picked up by the courts – the so-called ‘rational ignorance’ argu-

ment (Lemley, 2001). Taken to its extreme, this logic might suggest a pure registration

system in which the patent office makes no substantive examination effort at all. How-

1Attempts at assessing the extent of the problem include Paradise, Andrews and Holbrook (2005),
who examine claims in 74 human gene patents and find 38 percent to be problematic, and Henkel and
Zischka (2015), who use invalidation rates in the German federal patent court and survey evidence
to conclude that 75 percent or more of German patents are fully or partially invalid. Two recent
papers study the potential sources of the problem. Frakes and Wasserman (forthcoming) show that
examination intensity affects quality; reductions in the time U.S. patent examiners spend reviewing
applications result in higher grant rates and patents of lower quality. Frakes and Wasserman (2015)
provide evidence that the fact that examiners cannot issue final rejections (applicants can amend and
refile repeatedly) leads them to grant more low-quality patents in periods of tight budget constraints.

2Other related studies include Caillaud and Duchene (2011) and Atal and Bar (2014).
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ever, the ideas developed by legal scholars have not been subjected to formal economic

analysis, embedding them in an equilibrium framework in which policy instruments

affect optimal strategies of inventors and competitors.

This paper studies how policy-makers can most effectively use the instruments at

their disposal to improve patent screening. We focus on four key policy instruments: the

intensity of patent office examination, pre-grant (application) fees paid before patent

examination, post-grant (issuance/renewal) fees paid by inventions that have passed

examination, and review by the courts for patents challenged by a competitor. For most

of the analysis, we assume that courts invalidate patents on obvious inventions with

certainty; we relax this later and study how results change with the characterization

of courts. To our knowledge, we are the first to develop an integrative framework

incorporating all four policy instruments, and to study how they interact.

One of our contributions is that our framework allows us to identify the severity of

the patent-quality problem. The reason for the dearth of evidence noted above is that

it is hard to know how many low-quality applications and patents there are. First, the

quality of applications is unobservable and can vary from year to year. Thus, changes

in the grant rate do not directly tell us how good a job the patent office is doing.

Second, because litigated patents are highly selected, litigation outcomes may not be

reflective of the general population. In particular, invalidity rates do not directly tell

us what share of all patents is of low quality. By putting structure on the problem

and exploiting an equilibrium framework, our approach allows us to get around both

of these issues.

We develop a model in which an inventor faces a competitor. The inventor is

endowed with an idea for an invention which can be either obvious (‘low type’) or

non-obvious (‘high type’). The invention type is private information to the inventor.

An obvious invention is profitable to develop in the absence of a patent, whereas a

non-obvious one requires patent protection to be profitable. Since patent protection

increases the profit for both types, however, owners of obvious inventions also have

a private incentive to seek a patent. There is a net social cost (benefit) of granting

patents for obvious (non-obvious) inventions, so effective screening is important for

welfare. The inventor chooses whether to pay a pre-grant fee and, if subsequently

approved (screening by the patent office is imperfect), whether to pay a post-grant fee

to activate the patent. If the patent is activated, the inventor may choose to license

the invention to the competitor, and the competitor chooses whether to challenge the

validity of the patent in court. The baseline model has a perfect court that always

invalidates an obvious patent and upholds a non-obvious one. In an appendix and

in simulations, we also analyze a second version that allows both the patent office
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and the court to make two-sided errors – granting/upholding an obvious patent and

rejecting/invalidating a non-obvious one. Formally, our model is a signaling game in

which each decision by the inventor can reveal information about the invention type,

and the competitor Bayesian updates.3

The key results are as follows. First, provided challenges are credible, the equilib-

rium is in mixed strategies, with low types either randomizing between offering low

and high license fees, or between applying and not applying for patents. The decision

they randomize over depends on the level of pre- and post-grant fees, as well as on the

examination intensity and the cost of going to court. This highlights the fact that the

policy instruments interact in shaping the equilibrium.

Second, we show that if the patent office makes no examination effort (a pure reg-

istration system), or if the pre-grant fee is zero and examination is imperfect, complete

screening (where no low types obtain patents) cannot be achieved. This is important

because it emphasizes that fees cannot completely screen in a pure registration system,

and that pre-grant fees and examination are complements, not substitutes. Complete

screening can be achieved by a combination of a pre-grant fee and an examination

that is sufficiently rigorous. We also show that, despite our assumption that courts are

mistake-free, they cannot eliminate all bad patents that are issued. This is because in

equilibrium not all low-type patents are challenged by the competitor. This result raises

serious doubts about over-reliance on the court system to weed out obvious patents.

Third, we study the optimal structure of fees and show that a social planner would

always frontload fees, i.e., rely on pre-grant rather than post-grant fees. The intu-

ition for frontloading of fees is that the low type prefers post-grant fees to pre-grant

fees more strongly than the high type because the low type has a smaller chance of

passing examination. This result calls into question the current structure of fees at

the major patent offices around the world. Patent offices often backload a substantial

part of their fees through post-grant charges for issuance and renewal.4 However, there

may be reasons outside our model for backloading fees. As Scotchmer (1999) and Cor-

nelli and Schankerman (1999) showed, renewal fees can be used to ensure that more

valuable inventions receive longer protection, which can increase welfare. In addition,

capital market imperfections, especially for young, small firms, may be another argu-

3To our knowledge, Meurer (1989) was the first to analyze a signalling game of patent licensing
negotiation in the shadow of litigation, but his focus was not on patent screening. Our model incor-
porates a licensing subgame but in a broader framework with multiple policy instruments. For other
examples of patent litigation models, but without private information, see Choi (1998) and Crampes
and Langinier (2002).

4At the USPTO, for example, a typical patent application (three independent claims or less) involves
a total of $1,740 in pre-grant fees. If the application is granted and the patent is renewed to full term,
total post-grant fees amount to $13,560 (not discounted). Of course, the applicant also incurs the legal
cost of preparing the patent application, which typically is in the range of 10-20 thousand dollars.
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ment against frontloading. Our analysis shows that any such benefits of backloading

fees must be traded off against the costs of impairing the effectiveness of screening.

Fourth, we show that the private incentives to challenge a patent can be either too

high or too low relative to the socially optimal level. This is noteworthy because the

conventional wisdom suggests that the private incentives to challenge are inadequate

due to the public-good nature of challenges (Farrell and Merges, 2004; Farrell and

Shapiro, 2008). While this point is valid, it is also incomplete. We show that there

are other factors that can either reinforce or counteract this effect. Private and social

incentives generally diverge both on the cost and benefit sides. First, a challenger takes

his own, but not the patentee’s, litigation cost into account. Second, the private gains

from a successful challenge, given by the challenger’s incremental profit from invalida-

tion, can be either larger or smaller than the social gains, given by the deadweight loss

that is eliminated.

Finally, we simulate the model, calibrated on U.S. patent and litigation data. The

simulations have two purposes: first, to characterize the severity of the current problem

with patent quality and screening, and second, to study the welfare impact of various

counterfactual policy reforms. We simulate the model both with a perfect court and an

imperfect court. In both settings, we find that at least 75 percent of patent applications

are made on inventions that would be developed even without patent rights, and that

the patent office is relatively ineffective at screening them out, as it does so with a

probability of only about 30 percent. This implies that between 65 and 81 percent of

granted patents are invalid, depending on the specification of the courts. These findings

highlight the current crisis in patent screening, and the need to develop effective policies

to address it. We use the simulations to quantify the effects of policy reforms including

frontloading fees, intensifying patent office examination, introducing a cap on litigation

costs, and replacing examination with a pure registration system. The simulations

indicate that the first three reforms significantly increase welfare, while a registration

system reduces it. These results suggest that an effective strategy for improving patent

screening may require both patent office and tort reforms.

Throughout the paper, we take the existence of a patent system as given. It is not

a priori clear whether a patent system is the optimal mechanism in the environment

we consider. However, since abolishing the patent system is not on the table in the

foreseeable future, we believe that exploring how to improve the functioning of the

existing system is a worthwhile endeavor in its own right. One of the advantages of

the game-theoretic approach we adopt, as compared to the mechanism design alterna-

tive, is that it allows us to use the model to evaluate the performance of the current

patent screening institutions and to assess the welfare effects from counterfactual policy
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reforms.5

The paper is organized as follows. Section 2 presents a simple model of patent

screening without courts. Section 3 introduces court challenges, derives the equilibrium,

and presents comparative statics results. Section 4 studies the effectiveness of screening

and develops the welfare analysis. Section 5 presents simulations that illustrate welfare

gains from policy reforms both for the model with perfect courts and imperfect courts.

Section 6 discusses some of the key assumptions in the model and how the results extend

to alternative settings, including heterogeneous value of inventions. We conclude with

a brief summary and directions for further research.

2 A Simple Model of Patent Screening

There is a unit mass of inventors. Each inventor is endowed with an idea θ ∈ {L,H}
for an invention. Developing an idea into an invention requires an R&D investment

κθ. Ideas with θ = H correspond to inventions with high R&D cost κH and occur

with probability λ, while ideas with θ = L correspond to inventions with low R&D cost

κL and occur with probability 1 − λ. The idea θ (and thus the R&D cost, κθ) is the

inventor’s private information. Once an invention has been developed, the inventor can

apply for a patent.6

Profits and welfare prior to invention are normalized to zero. If the invention is

developed, profits and welfare depend on whether the inventor obtains a patent. In the

absence of a patent, the inventor earns π ≥ 0 and total welfare is w ≥ π (both are gross

of R&D costs). Thus, π is a measure of the profits the inventor can appropriate without

a patent.7 With a patent, the inventor earns π+ ∆, and welfare is w−D, where ∆ > 0

denotes the patent premium and D ≥ 0 is the deadweight loss from monopoly pricing.8

This captures in the simplest possible way the classic tradeoff whereby patents increase

the incentives to innovate but at the same time cause deadweight loss. We assume

5It is also worth noting that a patent system with the patentability requirement which we will analyze
places lower informational requirements on the government than an alternative incentive mechanism
such as a prize system. A prize system requires the government to know the gap between R&D costs
and profits in the absence of patent protection, whereas the patent system we model only requires
knowledge of the sign of the gap. For more discussion of our patentability requirement and how it
relates to the existing statutory and judicial standards, see Section 2.

6We assume that patent applications can only be submitted on inventions, not ideas. While the legal
treatment is more complicated, the basic patent ineligibility of abstract ideas was recently affirmed by
the U.S. Supreme Court in the Bilski case (Bilski v. Kappos, 561 U.S. 593, 2010).

7We note two points. First, for the inventor to benefit from the invention even absent patent
protection (π > 0), competition must not be too fierce, or there must be an alternative appropriation
mechanism such as lead time. Second, in Section 6.1 we relax the assumption that all inventions have
the same value.

8In principle, D can also capture other costs associated with patents such as patent congestion
(thickets) and royalty stacking that can raise transaction costs for inventors to license inputs necessary
to conduct R&D (Heller and Eisenberg, 1998; Shapiro, 2001). We do not explicitly model those costs,
however.
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that w −D ≥ π + ∆. This assumption says that the social returns exceed the private

returns to R&D, which is consistent with the evidence in Bloom, Schankerman and

Van Reenen (2013).

An important modeling choice concerns the requirements for an invention to be

patentable. In what follows, we impose the patentability requirement κ > π, i.e., R&D

costs must exceed the profits the inventor can appropriate without a patent. This

corresponds to the notion that patents should be given only to those inventions that

require the patent incentive to be developed, and not to those that society would have

benefited from even absent a patent. This perspective is in line with the rationale

courts and legal scholars typically give for the non-obviousness requirement in patent

law (Eisenberg, 2004). For example, in the landmark case of Graham v. John Deere (383

U.S. 1 (1965)) the U.S. Supreme Court stated: “The inherent problem was to develop

some means of weeding out those inventions which would not be disclosed or devised

but for the inducement of a patent.” Of course, while this theoretical patentability

criterion makes economic sense, the courts have struggled with the practical aspects

of how to implement it. The various judicial standards for non-obviousness, novelty

etc. reflect an attempt by the courts to do this, the basic presumption being that if an

invention is obvious to those skilled in the relevant scientific arts then it is probably

cheap to develop, and one does not need a patent to induce it.

In our setup, where ideas arrive exogenously and are scarce, this is also the patentabil-

ity requirement that a social planner would choose. To see this, consider the planner’s

decision about which types of inventors should be given patents. The planner is worried

about deadweight loss, but also realizes that some socially valuable inventions will not

be developed without the promise of a patent. Ideas with π ≥ κ, however, are devel-

oped even without a patent, so giving them a patent can never be optimal. A second

concern for the planner would be that giving patents to some ideas with π < κ ≤ π+∆

leads to development of these ideas even though they are not socially valuable, i.e.,

κ > w−D. Our assumption that w−D ≥ π + ∆ rules this out, however, as it implies

that ideas that are not socially valuable are not privately valuable either.

To make the problem interesting, we assume that κH = k > π ≥ κL = 0. Setting

κL = 0 is without loss of generality as type-L inventions are developed regardless of

whether or not a patent is expected to be obtained.9 In order to ensure that patent

protection can provide sufficient incentive for type-H inventors to develop their ideas,

we assume ∆ ≥ k−π. Note that this implies w−D ≥ k, so that investment by type-H

inventors is socially valuable even if it comes at the expense of deadweight loss.

Under these assumptions, type-H inventors should be given patents while type-L

9Note that for the simulations in Section 5 we do not impose κL = 0. The simulations actually
generate an estimate of κ for both type-L and H inventions.
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inventors should not.10 The problem, of course, is that the type θ of an invention is

privately observed by the inventor. Since type L also benefits from patent protection,

society must put in place a screening mechanism. We start by considering the patent

office; in Section 3 we introduce the courts as a second ‘line of defense.’

To obtain a patent, the inventor must submit an application to the patent office and

pay a pre-grant fee φA ≥ 0. The patent office then examines the application. We assume

that type-H inventions always pass the examination, while type-L inventions pass the

examination only with probability 1− e, where e ∈ [0, 1] represents the patent office’s

examination intensity; with probability e type-L inventions are detected and refused

patent protection. (We relax the assumption that there are no erroneous rejections in

Appendix B.) Inventions that pass the examination must pay a post-grant fee φP ≥ 0

in order to be issued a patent.11 This payment thus occurs after the patent office has

decided whether to allow or reject the application, and has to be paid only in case of

allowance. We will refer to payment of φP as the inventor activating the patent.12 If

the inventor does not apply, does not pass the examination, or does not pay φP , the

invention falls into the public domain.

Suppose for the moment that challenging the validity of a patent in court is not

possible. Then an inventor of type H invests in R&D, applies for a patent, and activates

it if and only if

∆− (k − π)− φP − φA ≥ 0. (1)

An inventor of type L always invests as κL = 0 < π. He applies for a patent and

activates (conditional on passing the examination) if and only if

(1− e)(∆− φP )− φA ≥ 0. (2)

Although derived from a highly stylized model, this pair of inequalities leads to two

key observations which, as we will show, apply much more generally:

Observation 1. In the absence of sufficiently rigorous patent examination, it is im-

possible to deter type L without also deterring type H.

Observation 2. Pre-grant fees screen more effectively than post-grant fees.

10Though it may seem counterintuitive to reward ideas with high R&D costs, we show in Section 6.2
that such a patentability requirement can make sense even in an environment where inventors choose
which ideas to pursue.

11As we will show, our results suggest that negative post-grant fees might be optimal. In principle
this could be implemented by imposing a penalty on failed patent applications or a reward to suc-
cessful applicants. Of course, this might introduce excessive incentives for the patent office to reject
applications.

12One can think of the post-grant fee φP as a renewal fee paid in lump sum, whereby the inventor
chooses to maintain his patent for some duration in exchange for payment of φP .
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Observation 1 is related to the fact that holding a patent is worth the same to both

types (namely, ∆), but type H needs to cover an additional k − π to make (investing

and) applying worthwhile. This implies that if e = 0, type L’s payoff from applying

strictly exceeds type H’s for any (φA, φP ), so setting fees high enough to deter type L

will also deter type H. Achieving full screening – i.e., deterring applications from type

L without discouraging investment by type H – requires

(1− e)∆ ≤ ∆− (k − π), (3)

i.e., a minimum examination intensity ē ≡ (k − π)/∆ > 0. If e < ē, there is no

combination of fees that can achieve full screening.

In Observation 2, pre-grant fees screen more effectively in the sense that type L

prefers fees to be backloaded more strongly than type H. Keeping the sum of pre-

grant and post-grant fees constant at φA + φP = Φ, type H is indifferent over all

combinations of fees: φA and φP are perfect substitutes for him. By contrast, type L

strictly prefers post-grant fees to pre-grant fees. Again keeping the sum of fees constant,

type L’s expected total fee payment is φA + (1− e)φP = φA + (1− e)(Φ−φA), which is

increasing in φA. The reason why type L prefers fees to be backloaded is that pre-grant

fees must be paid whether or not he passes examination, whereas post-grant fees are

only paid conditional on passing examination.

One implication of Observation 2 is that we cannot rely exclusively on post-grant

fees if we want to achieve full screening. If φA = 0, then (unless e = 1) the only way

to deter type L is to set φP ≥ ∆, but then type H’s payoff from investing in R&D is

negative. Hence, full screening requires strictly positive pre-grant fees, φA > 0.

3 Introducing Court Challenges

We now extend the model from Section 2 by introducing court challenges. We model

courts as differing from the patent office in two ways. First, while the patent office

examines all applications, the courts only review patents whose validity is challenged

(in practice, usually by a competitor or other potential licensee). We thus consider

an explicit licensing game between the inventor and a competitor active in the same

industry. Second, in assessing validity the courts make fewer mistakes than the patent

office.13 To begin, we adopt the simplifying assumption that the courts do not make

any mistakes: they always uphold valid patents (type H) and revoke invalid ones (type

L). In Section 5.2 and Appendix B, we examine a more general screening technology

in which both the patent office and courts can make type I and type II errors.

13Court cases have more time to gather evidence and hear arguments than the typical time patent
examiners allot to screening, and also have the patent office’s prior art search as input. Thus there is
reason to believe that courts (especially bench trials) may be better at screening.

9



Suppose the invention is a cost-reducing technology and each inventor has a single

competitor. Once developed the invention can be freely used by the competitor unless

it is protected by a patent. Thus, in the absence of a patent, both the inventor and

competitor benefit from the cost reduction and obtain profit π each.14 Denoting con-

sumer surplus by S ≥ 0, total welfare is w = 2π+S. An inventor holding a patent can

enter into a license agreement with his competitor. We assume that the inventor makes

a take-it-or-leave-it offer to the competitor to license the invention at a royalty rate

that generates license revenue F (for brevity, we hereafter refer to F as the license fee).

The competitor decides whether to accept or reject; if she rejects, she further decides

whether to challenge the patent in court.

If the firms fail to agree on a license contract and the courts do not revoke the patent,

only the inventor can use the new cost-reducing technology while the competitor has to

use the backstop technology.15 Under this asymmetric competition, the inventor earns

π + ∆I and the competitor π −∆C , where ∆I > 0 and ∆C > 0. That is, the patent

benefits the inventor and hurts the competitor. The competitor’s profits in this case

(π −∆C) constitute her outside option in the licensing negotiations.

If the firms reach agreement, the competitor pays the license fee to the inventor

and both firms can use the invention in production. With a license agreement in place,

the firms are able to (jointly) exercise market power, for example by using royalties to

soften competition. We capture this in reduced form by assuming that the inventor

earns π+m+F and the competitor π−F , where m ≥ 0 is the extra profit due to market

power.16 Thus, total industry profit becomes 2π +m. We assume that m+ ∆C ≥ ∆I ,

which will ensure that the inventor prefers to license his invention rather than exclude

the competitor and compete with asymmetric costs. Accordingly, in what follows we

let ∆ ≡ m+ ∆C .17

If the competitor rejects the license contract, she has the option of challenging

the patent in court at litigation cost lC to herself and lI to the inventor. We assume

lC < ∆C , since otherwise the competitor never has any incentive to challenge. The

court then determines the validity of the patent. We assume that during litigation the

court learns the invention’s true type θ. If θ = L, the court invalidates the patent and

both firms can freely use the invention. If θ = H, the court upholds the patent and the

14Symmetry in profits is not important; what matters is that the competitor is made worse off by
the inventor owning a patent.

15We are assuming that infringement is not at issue. If the competitor infringed the patent without
challenging its validity, the inventor could sue for infringement and would be sure to prevail.

16The parameter m can be interpreted as a measure of how lenient or restrictive antitrust policy is
towards license agreements. Because the inventor has all the bargaining power, it does not matter how
the extra profit m is distributed between inventor and competitor.

17Letting S − ∆S denote consumer surplus after innovation when there is a patent, we have D ≡
∆S −m. The assumption that deadweight loss is positive amounts to ∆S ≥ m.
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inventor can offer a new license contract to the competitor.

This is a signaling game where the inventor’s decisions to apply for and activate a

patent, as well as which license fee to propose, potentially convey information about

his type to the competitor. We now analyze the Perfect Bayesian Equilibrium of this

game.

3.1 Equilibrium

Let λ̃(F ) denote the competitor’s belief that she is facing a type-H inventor when

offered a license at fee F . Suppose type H invests and applies, and that if he is

successful in obtaining a patent, he activates it and charges a license fee FH = ∆C (we

later show under what conditions this is an equilibrium). Let α denote the probability

that a type-L inventor applies for a patent. Similarly, let ρ denote the probability that

a type-L inventor activates the patent in case he passes examination, and y denote the

probability that he offers a license at fee FH . The competitor’s belief that an activated

patent is valid when offered a license at fee FH is

λ̂ ≡ λ̃(FH) =
λ

λ+ (1− λ)(1− e)αρy
. (4)

The competitor prefers challenging to not challenging if and only if (1 − λ̂)∆C ≥ lC .

The left-hand side is the expected benefit from a challenge, given by the probability

that the court invalidates the patent times the increase in the competitor’s profits if the

patent is invalidated; the right-hand side is the cost of litigation. The lower bound on

λ̂ occurs if the type-L inventor pools with the type-H inventor, i.e., if α = ρ = y = 1,

and is given by

λ ≡ λ

λ+ (1− λ)(1− e)
.

Because this is the lowest value that λ̂ can take, we will say that a validity challenge is

credible if and only if

(1− λ) ∆C ≥ lC . (5)

When challenges are not credible, the competitor never challenges and accepts any

license fee F ≤ ∆C . Hence, both types of inventor propose F = ∆C , and holding a

patent is worth the same to both of them, namely ∆ = m+ ∆C . The outcome is thus

exactly the same as in the simple model of Section 2.

When challenges are credible, holding a patent is generally not worth the same to

both types of inventors. Because type L is less likely to survive a challenge than type

H, the patent is worth less to type L for any given probability of being challenged. One

might thus expect post-grant fees to be effective at screening out type-L inventors: it

should suffice to set φP at (or slightly above) the expected value of a patent to type
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L. Since the decision to challenge is endogenous, however, this argument does not

work. To see this, suppose only type-H inventors pay the post-grant fee to activate

their patents (a separating equilibrium). Then the competitor correctly infers that

all activated patents are valid and never challenges. But then, the patent is again

worth the same to both types of inventors, and the low type would want to activate as

well. As this argument suggests, and Proposition 1 establishes formally, the equilibrium

generally involves mixed strategies.

Proposition 1. If φP > ∆ − φA/(1 − e), the type-L inventor does not apply and the

competitor does not challenge. If challenges are credible and φP ≤ ∆ − φA/(1 − e),
there is a semi-separating equilibrium in which:

(i) the type-H inventor invests, applies, activates, and proposes FH = ∆C

(ii) the type-L inventor always randomizes over either

(a) the decision whether to apply or not (probabilities α and 1− α), or

(b) the license fee to propose, FL ∈ {∆C , lC} (probabilities y and 1− y),

such that (1− λ̂)∆C = lC ; he always activates (ρ = 1)

(iii) the competitor randomizes over the decision whether to challenge or not (proba-

bilities x and 1 − x) if offered F = ∆C and never challenges if offered F = lC ,

with

x =


x̃ ≡ ∆C − lC

∆ + lI
for φP < lC +m− φA

1− e

x̂ ≡ ∆− φP − φA/(1− e)
∆ + lI

for lC +m− φA
1− e

≤ φP ≤ ∆− φA
1− e

This semi-separating equilibrium requires that the high type make nonnegative profit,

∆− (k − π)− xlI − φA − φP ≥ 0.

Proof. See Appendix A.

In the equilibrium described in Proposition 1, the type-L inventor applies with

probability α and charges a high license fee ∆C , mimicking the type-H inventor, with

probability y.18 With probability 1 − y, type L charges a low license fee lC , which

18The equilibrium is not unique. There exists a continuum of semi-separating equilibria with ∆C −
lI ≤ FH ≤ ∆C and (depending on parameters) also pooling equilibria in which both types charge
F ∗ ≤ lC+λ∆C and the competitor refrains from challenging. However, the semi-separating equilibrium
with FH = ∆C is the only one that survives application of the D1 criterion. Details are available from
the authors upon request.
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prevents the competitor from challenging.19 The competitor challenges with probability

x whenever the inventor proposes a license fee of ∆C .

When the rate of challenges is x, the type-H inventor’s payoff from investing, apply-

ing, activating and proposing FH is ΠH ≡ ∆− (k − π)− xlI − φP − φA: if a challenge

occurs, the type-H inventor is sure to win but nevertheless bears the litigation cost

lI . Because the rate of challenges depends endogenously on the patent office fees, the

type-H inventor’s payoff is affected by φA and φP both directly and indirectly through

their effect on x.

Let α̃ (resp. ỹ) denote the value of α (resp. y) that solves (1 − λ̂)∆C = lC when

y = 1 (resp. α = 1) and ρ = 1. From (4) it follows that α̃ = ỹ. Figure 1 depicts how the

equilibrium that arises when challenges are credible depends on φA and φP . In region

1, where φP < lC +m− φA/(1− e), fees are sufficiently low for the type-L inventor to

always find it worthwhile to apply and activate (α = ρ = 1), while randomizing over

the license fee to offer with y = ỹ. The rate of challenges is given by x̃. Moving toward

the north-east into region 2, type L can no longer break even by proposing the low fee

F = lC ; he now randomizes over the application decision, applying with probability

α = α̃ while activating and offering the high license fee FH with certainty (ρ = y = 1).

The rate of challenges is given by x̂. As fees increase further and we reach region 3,

the type-L inventor no longer applies (α = 0) and the rate of challenges drops to zero

(x = 0). The figure also shows the condition under which type H finds it profitable to

invest, as represented by the ΠH = 0 locus.20

3.2 Comparative statics

Patent office fees and examination intensity affect the equilibrium application rate

of type-L inventors, the rate of challenges, and the license fees proposed. The next

proposition characterizes these comparative statics.

Proposition 2. Suppose the type-H inventor invests, i.e., ΠH ≥ 0, and challenges are

credible. Then:

(i) An increase in φA or φP weakly decreases applications by type L (α), weakly

decreases the rate of challenges (x), and weakly increases the probability that type

19This outcome, where the owner of the low quality patent charges a royalty that preempts a chal-
lenge, could be interpreted as behavior by a patent assertion entity. For recent analysis of this issue,
see FTC (2016).

20Note that for certain parameters, this locus may be upward sloping, as shown in the figure. This
implies that the type-H inventor’s expected profit is increasing in φA over some range. The reason
this can happen is that an increase in fees raises the perceived quality of patents, to the benefit of
patent holders. While this argument is made in a reduced-form way in Atal and Bar (2014), here we
endogenize the source of the benefits from higher perceived patent quality, namely, the fact that higher
fees lead to fewer challenges and thus lower litigation costs. Under some conditions, this indirect effect
of higher fees can dominate their direct effect on the high type’s profit.
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φP

0
φA

No investment by type H

∆− (k − π)

∆− (k − π)

α = 0,
x = 0

3

∆− (k − π)− x̃lI

∆

(1− e)∆

α = α̃,
y = 1, x = x̂

2

lC +m

(1− e)(lC +m)

α = 1,
y = ỹ, x = x̃

1

ΠH = 0 locus

Figure 1: The equilibrium as a function of φA and φP when ē < e < 1

L charges the high license fee (y).

(ii) An increase in e has ambiguous effects on applications by type L (α), weakly

decreases the rate of challenges (x), and weakly increases the probability that type

L charges the high license fee (y).

Proof. See Appendix A.

Proposition 2 shows that an increase in fees unambiguously decreases bad applica-

tions and challenges (in a weak sense). It also leads type L to charge the high license fee

more often. As fees increase and we move from region 1 to 2, type-L inventors switch

from randomizing over the license fee to randomizing over the application decision, and

charge the high license fee with certainty. Perhaps more surprisingly, an increase in

the examination intensity has ambiguous effects on applications by type-L inventors.

While increasing the examination intensity directly discourages type-L inventors from

applying, over some range, the application rate of type-L inventors actually increases

with e. The intuition is that more rigorous examination makes it more likely that a

granted patent is valid, other things equal. That is, higher e raises the competitor’s

posterior belief λ̂. But in equilibrium, the competitor must be indifferent between chal-

lenging and not, which requires that λ̂ be held constant. Therefore, in region 2, type

L responds to an increase in e by adjusting the probability of applying (α) upward.

Finally, an increase in e lowers the rate of challenges: as type L’s payoff from applying

declines, the rate of challenges needed to make him indifferent between applying and
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ỹ

1

φ12
A

Figure 2: α, x, and y as a function of φA for ē < e < 1 and φP < ∆− (k − π)/e
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ỹ

1
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Figure 3: α, x, and y as a function of e for φA + φP < lC +m and φA > 0

not is reduced.21

Figures 2 and 3 illustrate these results.22 Figure 2 shows how the equilibrium values

of α, x, and y vary with φA, holding φP and e constant. It is drawn for parameter

values such that ē < e < 1 and φP < ∆ − (k − π)/e, which ensures that for φA = 0

the equilibrium is in region 1, while for φA sufficiently large the equilibrium is in region

3. The cutoffs φ12
A and φ23

A are defined as the threshold values of φA above which the

equilibrium moves from region 1 to region 2 and from region 2 to region 3, respectively.

Figure 3 shows how α, x and y vary with e, holding constant φA and φP . It is drawn

for parameter values such that φA + φP < lC +m and φA > 0, which ensures that for

21More stringent patent examination can reduce the incidence of litigation, but does not necessarily
do so. Although a sufficiently large increase in the examination intensity (to the point where the
challenge credibility constraint (5) no longer holds) always leads to a drop in litigation, the same is not
true for marginal increases in e. To see this, note that the rate of challenges x in the model does not
coincide with the observed rate of litigation. Letting LR denote the rate at which patents are litigated,
in region 1 for example we have

LR =
x(λ+ (1− λ)(1− e)y)

λ+ (1− λ)(1− e) .

That is, the litigation rate is equal to x multiplied by the percentage of patentees charging high royalties.
Although raising e weakly reduces the rate of challenges, it may increase the litigation rate. This is
the case in region 1, where x is constant but y increases with e; see Figure 3.

22Both figures are drawn under the implicit assumption that ΠH ≥ 0 and that e is low enough for
the challenge credibility constraint (5) to be satisfied.
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e = 0 the equilibrium is in region 1, while for e sufficiently close to 1 the equilibrium is

in region 3. The cutoffs e12 and e23 are defined similarly as above.

4 Screening and Welfare

In this section we revisit the conditions for full screening. We show that when court

challenges are possible, full screening again requires a minimum examination intensity,

and that its level is the same as in the absence of courts. We then set up the welfare

function and study the optimal fee structure and the private and social incentives for

court challenges.

4.1 Conditions for full screening

The following proposition examines when and how it is possible to deter type-L inven-

tors without discouraging type-H inventors.

Proposition 3. There exists a combination of fees (φA, φP ) inducing full screening if

and only if e ≥ ē. For a given e ≥ ē, any combination of fees satisfying

(1− e)(∆− φP ) ≤ φA ≤ ∆− (k − π)− φP (6)

achieves full screening.

Proof. By Proposition 1, deterrence of type L (α = 0) requires φA ≥ (1− e)(∆− φP ).

Investment by type H when type L is deterred (and thus, in equilibrium, x = 0) requires

∆ − (k − π) − φP ≥ φA. A pre-grant fee φA satisfying both inequalities exists if and

only if ∆− (k − π)− φP ≥ (1− e)(∆− φP ), or

e ≥ k − π
∆− φP

. (7)

Since the right-hand side increases with φP , the minimum level of e required to achieve

full screening is obtained by evaluating (7) at φP = 0, yielding e ≥ (k− π)/∆ = ē.

Proposition 3 extends Observation 1 from the simple model of Section 2 by showing

that full screening of inventors requires a minimum examination intensity, ē > 0. This

happens despite the fact that we have assumed that courts are perfect at discriminating

between valid and invalid patents. The presence of courts does not even change the

level of rigor required to achieve full screening, which remains ē. This is because,

although the courts are perfect, challenges must be initiated by the competitor, who

is not. The competitor is Bayesian and updates her beliefs based on the inventor’s

equilibrium strategy. If there were an equilibrium in which only type H applies, the

competitor would rationally expect any applicant to be of type H, and therefore refrain
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from challenging. But then, in the absence of patent examination, type L would also

find it worthwhile to apply, hence such an outcome cannot be an equilibrium. Instead

the equilibrium will be in mixed strategies, implying that at least some type-L inventors

apply.

This result underlines the importance of the patent office. A key distinctive feature

of patent office review is that all applications are examined. By contrast, court review

only occurs if the competitor challenges, and that depends on the type-L inventor’s

equilibrium strategy. This is the fundamental drawback of a pure registration system,

relying entirely on the courts for screening.23

Proposition 3 also characterizes the fee structure that is necessary to achieve full

screening. Because φP ≤ ∆ − (k − π) < ∆ is needed in order for type H to invest,

(6) implies that for any e < 1, the pre-grant fee φA must be strictly positive if type

L is to be deterred. The intuition is that, if applications are costless (φA = 0) and

examination is less than perfect (e < 1), type-L inventors have nothing to lose from

applying. Because of the mixed-strategy nature of the equilibrium, at least a fraction

of type-L inventors will activate the patent for any φP < ∆. Completely deterring type

L through the post-grant fee is possible only by setting φP ≥ ∆, which also deters type

H. In addition, satisfying (6) requires that φP be set sufficiently low, which is a variant

of Observation 2 from the simple model of Section 2.

A further result of our analysis is that, despite the fact the courts are mistake-free,

they cannot eliminate all bad patents that are issued. Eliminating all bad patents

would require that x = 1 whenever α > 0, i.e., all issued patents would need to

be challenged. Alternatively, type-L inventors would have to reveal themselves so

that they could be targeted by challenges. But neither of these is an equilibrium

outcome. There is no equilibrium with α > 0 and x = 1. There is also no equilibrium

in which type-L inventors reveal themselves and then get challenged. Although for

φP < lC + m − φA/(1 − e), type L sometimes reveals himself by offering F = lC , the

competitor optimally responds to this by not challenging.

23We implicitly assume that the patent office can commit to examining all patent applications, even
if in equilibrium no type-L inventor applies (region 3). This assumption can be justified in two ways.
First, patent examiner compensation contains few performance-dependent elements, so that there is
little incentive for them to adjust their examination intensity according to their beliefs about the
proportion of good and bad applications. Second, in a richer setting where inventions differ in their
commercial value, there will always be high-value inventors who apply even though their inventions do
not satisfy the patentability criteria; the patent office’s examination intensity merely determines the
threshold on value below which no type-L applications are submitted. (We develop this extension in
Section 6.1.) Under the plausible assumption that the patent office does not observe the value of an
invention, from the examiner’s perspective there will thus always be a strictly positive probability of
the application being a low type. Provided the competitor observes the value, as we assume, our results
on private challenges are unaffected.
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4.2 Welfare

We now derive expected welfare as a function of the equilibrium variables α, x, and y.

Assume that the cost of examining an application with intensity e is γ(e). Denoting

expected welfare by W , we have

W (α, x, y) = 2π + S + λ(−D − x(lC + lI)− k − γ(e))

+ (1− λ)α
(
(1− e)

[
(y(1− x) + 1− y)(−D)− xy(lC + lI)

]
− γ(e)

)
. (8)

With probability λ, the invention is non-obvious (type H), in which case the inventor

always applies and society incurs the deadweight loss D, the cost of investment k and

the cost of examination γ(e) with certainty, while it incurs the cost of challenges (lC+lI)

with probability x. With probability 1− λ, the invention is obvious (type L), in which

case the inventor applies with probability α. Conditional on application, society incurs

the deadweight loss with probability (1 − e)(y(1 − x) + 1 − y), the cost of challenges

with probability (1 − e)xy, and the cost of examination with certainty. Since profits

and consumer surplus prior to invention are normalized to zero, W in fact represents

the expected welfare gains from innovation.

Optimal fee structure Let e ≡ [k − π −∆(∆C − lC)/(∆ + lI)]/(lC + m). If e < e

only region 1 is attainable, and in region 1 welfare is unaffected by φA and φP because

α = 1, x = x̃, and y = ỹ, none of which depend on fees. If e ≥ ē, region 3 is attainable,

and any combination of fees within region 3 maximizes welfare. This is immediately

clear from inspection of (8): holding e constant, welfare is maximum for α = 0 and

x = 0.

To make the problem interesting, assume in what follows that e < e < ē (that is,

(1− e)∆ > ∆− (k−π) and ∆− (k−π)− x̃lI > (1− e)(lC +m)), so that both region 1

and region 2 are attainable but region 3 is not (i.e., full screening cannot be achieved).

Geometrically, region 3 in Figure 1 disappears as the φP = ∆ − φA/(1 − e) line now

shifts above the ΠH = 0 locus.

The social planner’s problem is to choose φA and φP to maximize welfare subject

to type H investing, taking e as given:

max
φA,φP

W (α, x, y) subject to ΠH ≥ 0.

Although welfare does not depend directly on φA and φP , it depends on them indirectly

through their effect on the equilibrium values of α, x, and y. The following proposition

characterizes the welfare-maximizing mix of fees.

Proposition 4. Suppose e < e < ē. Welfare maximization always entails fees such

that φA ≥ (1 − e)(lC + m − φP ) (region 2). If ∆C > (lC/(lC + lI))D, welfare is
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maximized by setting φP = 0 and φA such that ΠH = 0, thus minimizing challenges.

If ∆C < (lC/(lC + lI))D, welfare is maximized by setting φA = (1 − e)(lC + m − φP )

and 0 ≤ φP ≤ min{lC +m, [∆− (k − π)− x̃lI − (1− e)(lC +m)]/e}, thus maximizing

challenges.

Proof. See Appendix A.

Proposition 4 establishes two important results. First, it is always optimal to raise

fees high enough to push the equilibrium into region 2. To understand this result, note

that the welfare loss from type-L inventors in (8) can be written as

α[(1− e)D + γ(e)]− (1− e)αyx(D − (lC + lI)).

The first term represents the social cost that low types applying for patents would

cause if there were no court challenges. The second term represents the deadweight

loss that is eliminated by court challenges, net of litigation costs. Recall that in region

2 type L randomizes over the application decision (α = α̃, y = 1), whereas in region 1

he randomizes over the license fee to propose (α = 1, y = ỹ). Since α̃ = ỹ, it follows

that αy is the same in regions 1 and 2. This reflects the fact that in both regions αy

is such that the competitor is indifferent between challenging and not. Thus holding

x constant the second term in the expression above is also the same in both regions.

Raising fees thus affects welfare only through the first term and through the rate of

challenges x. Recall that x equals x̃ in region 1 (which is constant in fees) and x̂ in

region 2 (decreasing in fees). The proof shows that x̂ tends to x̃ as fees approach the

border between regions 1 and 2 (with equality for φA = (1− e)(lC +m− φP )). Thus,

we can achieve the same rate of challenges in region 2 as in region 1. Because the first

term is increasing in α, and α is lower in region 2, the welfare loss is also lower in region

2.

Second, it is optimal to set fees to either maximize or minimize challenges, depend-

ing on parameters. The welfare effect of challenges is a priori ambiguous. Differenti-

ating W with respect to x, we have

∂W

∂x
= −λ(lC + lI) + (1− λ)(1− e)αy(D − (lC + lI)). (9)

On the one hand, challenges help society get rid of invalid patents, which raises welfare

provided deadweight loss exceeds litigation costs, D > lC + lI . On the other hand,

challenges also create wasteful litigation of valid patents. Rewriting (9) using the

definition of λ̂ yields

∂W

∂x
= (λ+ (1− λ)(1− e)αy)

[
(1− λ̂)D − (lC + lI)

]
. (10)
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The term in square brackets represents the social incentive to challenge a patent whose

probability of being valid is λ̂. It equals the posterior probability of the inventor being

of type L (so that the courts will invalidate) times the deadweight loss that is saved if

the patent is invalidated, minus the social cost of a challenge.

Now consider the private incentive to challenge. In equilibrium (be it in region

1 or region 2), we have (1 − λ̂)∆C = lC : the competitor must be indifferent between

challenging and not when the inventor charges the high license fee F = ∆C . Evaluating

(10) at 1− λ̂ = lC/∆C , we see that welfare is decreasing in x if and only if

∆C ≥ D
(

lC
lC + lI

)
. (11)

The social and private incentives to challenge generally diverge: if (11) holds (with

strict inequality), the equilibrium rate of challenges is socially excessive; if (11) does

not hold, the rate of challenges is socially insufficient. In either case, the private

challenge decision is inefficient.24

When equilibrium challenges are socially excessive, a social planner wants to mini-

mize challenges. Proposition 4 shows that to achieve this, the planner should frontload

fees, setting post-grant fees to zero while relying exclusively on pre-grant fees, and set

pre-grant fees at the highest level compatible with investment by type H, so that the

constraint ΠH ≥ 0 is binding. The reason for this is that the rate of challenges goes

hand in hand with type L’s payoff: fewer challenges are necessary to make type L

indifferent between applying and not when his payoff from applying is small. Mini-

mizing challenges subject to investment by type H requires minimizing type L’s payoff

while holding type H’s payoff constant. Because type L prefers fees to be backloaded

more strongly than type H, this is accomplished through a mix of fees that emphasizes

pre-grant over post-grant fees.

Conversely, when challenges are socially insufficient, the planner wants to maximize

challenges. To this end, the planner should set fees as low as possible within region

2. Any mix of fees located on the boundary between regions 1 and 2 (where φA =

(1− e)(lC +m−φP )) and for which ΠH ≥ 0 (which requires φP ≤ [∆− (k−π)− x̃lI −
(1− e)(lC + m)]/e) leads to x = x̃, which is the maximum rate of challenges that can

be sustained. The optimal mix of fees is no longer uniquely determined. In general,

the constraint ΠH ≥ 0 does not bind at the optimum. Notice, however, that φP = 0

24Two points should be noted. First, there is another reason outside our model that leads to insuf-
ficient incentives to challenge patents: when there are multiple licensees, a patent challenge has the
nature of a public good (Farrell and Merges, 2004; Farrell and Shapiro, 2008). Second, for complete-
ness, we want to point out that there is also a second inefficiency associated with the competitor’s
challenge decision which cuts in the opposite direction: when F = lC , the inventor is revealed as being
of type L, so a challenge is socially desirable but does not occur. The planner cannot address this
second inefficiency through patent office fees, however, because the fees have no effect on the rate of
challenges when F = lC (it is always zero).
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continues to be in the solution set. Thus, insufficient incentives to challenge do not

provide an argument against frontloading of fees.25

Are the incentives to challenge likely to be excessive or insufficient? In a homogeneous-

good Cournot model with linear demand and constant marginal cost (which is what

we use for the simulations in Section 5), we have ∆C > D, i.e., the competitive disad-

vantage that the patent inflicts on the competitor is greater than the deadweight loss

it causes. This alone is enough to imply that eq. (11) holds, and thus that challenges

are socially excessive. We conjecture that the condition holds much more generally,

though, because there is a second force that also works in the direction of excessive

challenges: the competitor does not take into account the litigation cost lI it imposes

on the inventor (and society) by challenging. If litigation costs for both parties are

identical (lC = lI), for example, (11) only requires ∆C > D/2.

That challenges are undesirable does not mean that the threat of challenges is

undesirable. The presence of courts induces randomization by the type-L inventor

and thus leads to lower license fees (region 1) or fewer bad applications (region 2).

Our results do suggest, however, that the value of courts stems not so much from

invalidating bad patents – when incentives to challenge are excessive, the expected

reduction in deadweight loss is outweighed by litigation costs in equilibrium – but from

deterring bad applications and keeping a lid on royalties charged by the low type.

Fee structure and examination intensity when the patent office is budget

constrained Proposition 4 calls for an increase in patent office fees at least to the

point where φP +φA/(1− e) = lC +m (region 2). Given that litigation costs can easily

run a million dollars or more (AIPLA, 2011), such a steep hike may not be politically

feasible. In a richer model, it might also adversely affect innovation incentives. But if

patent policy is limited to operating within region 1, where patent office fees have no

effect on any of the equilibrium variables, is there still an argument for frontloading?

We now argue that there is, because frontloading raises fee revenue.

Suppose the patent office operates in region 1 and is constrained in the examination

intensity it can set by the revenue it collects from fees, and that this constraint is

binding. As a result the patent office operates at some e below the socially optimal

level, so that an increase in e would raise welfare. Now consider a shift in the fee

structure that leaves the sum of fees constant but shifts fees from post-grant to pre-

grant. Because φA+φP is constant and x remains at x̃, the profits of the type-H inventor

are unaffected. The change in the fee structure, however, leads to more revenue being

collected from type-L inventors who are refused patent protection and thus do not pay

25Among all solutions, φP = 0 is the one that maximizes the high type’s payoff.
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the post-grant fee but do pay the pre-grant fee. This relaxes the patent office’s budget

constraint and allows it to implement a welfare-improving tightening of examination.

We pursue this idea further in Section 5, where we consider a policy experiment along

these lines.

5 Simulation Analysis

5.1 Baseline simulations: perfect courts

The model generates predictions on the grant rate, litigation rate and patent validation

rate in court as functions of underlying parameters. In this section we use the observed

values of these outcomes to calibrate the model’s parameters, and then simulate the

model to quantify the welfare effects of different policy reforms. We first summarize

the simulation procedure and present the parameters from the baseline model (for more

details, see Appendix C). We then describe the policy experiments and present the

results. The observed patent fees and litigation costs are such that we are in region 1

(Figure 1, Section 3), hence α = 1. For the simulations we set litigation cost to be the

same for the inventor and competitor, lI = lC = l.

The simulations exploit equilibrium relationships from the theoretical model, to-

gether with Cournot competition between the incumbent innovator and a single com-

petitor. It is a noteworthy feature of our model that, when assuming Cournot competi-

tion, the grant rate, litigation rate and validation rate uniquely pin down the parameters

λ and e (without needing any other information). The main elements of the simulation

structure are summarized below:

1. Computed litigation rate: To compute the litigation rate, we use the observed liti-

gation rate for all patents and adjust it upward using the distribution of the value

of patent rights estimated by Schankerman and Pakes (1986). The adjustment is

made to account for the fact that only a subset of patents is worth litigating (i.e.,

they satisfy the challenge credibility constraint in the theoretical model).

2. Equilibrium grant rate, GR: The grant rate depends on the fraction of type-L

patents, λ, and the examination intensity, e. This gives an equation e = e(λ;GR).

3. Equilibrium litigation rate, LR: In the model this depends on λ, GR and

validation rate V R. Thus we can compute λ from the implied relationship

λ = λ(LR,GR, V R). From Step 2, we thus get e. Using the observed exami-

nation cost per patent application at the USPTO, this allows us to back out the

implied marginal cost of e, denoted by MCE.26

26We assume that examination costs are linear in examination intensity. We could easily allow for
convex costs, given an assumption about the cost elasticity.

22



4. Cournot model of competition: An incumbent innovator faces a single competitor

and a linear market demand. The incumbent can use his cost-reducing invention

and also license it to the competitor. He either sets a high royalty rate, which

generates income F = ∆C or a low royalty rate with income F = lC . In this

model, the elasticity of demand in equilibrium, η, depends on the demand scale

parameter a, initial unit cost c, and percentage cost reduction from the innovation,

s. This implies a = a(c; η, s).

5. Equilibrium patent validation rate in court, V R: In the model, the patent vali-

dation rate depends on (a, c, l). This gives an equation c = c(a, l;V R).

6. R&D equation: We assume that expected profit from innovations is equal to

observed R&D expenditures per patent, R, adjusted upward for a private rate

of return. This implies a relationship R = R(l, a, c;λ, s, η, V R,GR), where λ

is obtained from Step 3. We thus have three (non-linear) equations – R&D

equation, a = a(c; η, s) from Step 4, and c = c(a, l;V R) from Step 5. We solve

these equations to obtain (unique) values of (a, c, l).

7. Finally, to compute development costs for type-L and H inventions, we use the in-

equalities that ensure that expected profit for the type-L inventor without patent

protection is above κL, profit for the type-H inventor is below κH , and profit

for the type-H inventor with the patent exceeds κH . This yields a set of feasible

(κH , κL) pairs; for the simulations we use the mean of these values but the results

are robust.

To summarize, the main inputs to the simulations are: patenting costs, including

patent office fees φA and φP plus cost of drafting the application; demand elasticity,

η; cost saving from innovation, s; patent validation rate, V R; grant rate, GR; patent

litigation rate, LR; and R&D per patent, R. The main outputs of the simulations are

the fraction of non-obvious inventions, λ; examination intensity, e; demand and cost

parameters, (a, c); and development costs, (κH , κL). These parameters allow us to

compute all components of the welfare function.

5.1.1 Simulation Results

Table 1 presents the baseline results and robustness checks. The two most striking

results are that only 14 percent of patent applications are ‘non-obvious’ in the sense

that they would not be developed in the absence of patent protection (λ = 0.14),

and the patent office appears relatively ineffective at screening out ‘obvious’ patent

applications, as they do so with a probability e = 0.29. These parameters imply

23



that 81 percent of granted patents cover inventions that are ‘obvious’ (computed by

(1− λ)(1− e)/[λ+ (1− λ)(1− e)]), which highlights the severity of the patent-quality

problem.

Table 1. Simulation Results: Perfect Courts

Panel A. Baseline
λ e l (×106) y x Ratio κL (×106) κH (×106) MCE

0.14 0.29 1.26 0.15 0.45 0.11 1.52 4.43 126

Notes: Baseline parameters: s = 0.025, η = 2, R = $2.4 (×106), lmin = $350 (×103).

The column labeled ‘Ratio’ denotes the simulated value of ∆
∆+πI (0)

where ∆ is the gain to the

inventor from having a patent and πI(0) is the inventor’s profit from an unpatented invention.

Panel B. Robustness

Perturbation λ e l (×106) y x Ratio κL (×106) κH (×106) MCE

R = $2 (×106) 0.14 0.29 1.05 0.15 0.45 0.11 1.26 3.69 126
R = $3 (×106) 0.14 0.29 1.57 0.15 0.45 0.11 1.89 5.56 126

s = 0.01 0.14 0.29 1.27 0.15 0.45 0.047 1.51 4.45 126
s = 0.05 0.14 0.29 1.25 0.15 0.45 0.19 1.52 4.40 126
η = 1 0.14 0.29 1.27 0.15 0.45 0.04 1.51 4.46 126
η = 3 0.14 0.29 1.26 0.15 0.45 0.17 1.52 4.41 126

The simulations also generate three predictions that can be validated against exter-

nal and independent sources of information. First, the simulations imply a litigation

cost of $1.26 million (2015 dollars) for each party, which is consistent with the survey

evidence reported by the American Intellectual Property Law Association (AIPLA,

2011).27 Second, the simulated parameters imply that patent rights account for 11 per-

cent of the total returns to an invention (column ‘Ratio’). This is very similar to the

estimates generated by patent renewal models, which are typically in the range of 5-15

percent depending on the technology field (Schankerman, 1998). Third, Frakes and

Wasserman (forthcoming) estimate the impact of changes in time spent by examiners

per application on the probability that the patent is granted. Their estimates imply

an elasticity of the grant rate with respect to time spent from about minus one third

to minus one half. Our model allows us to compute a similar elasticity with respect to

27Their survey reports the typical patent litigation costs for different value at stake: less than one
million, 1-25 and greater than 25. We take a weighted average with weight of 90% on the first, reflecting
the fact that more than 90% of cases are settled before the trial begins (Lanjouw and Schankerman,
2004). This gives l = $1.5 million.
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examination intensity (using the fact that the grant rate is GR = λ+ (1− λ)(1− e)).
Our baseline estimates of λ and e imply an elasticity of -0.33.

The implied investment costs for type-L and H inventions are $1.52 and $4.43 mil-

lion, respectively. The cost per patent application of increasing examination intensity

by one percentage point, denoted by MCE – e.g., the cost of moving from e = 0.29 to

e = 0.30 – is $126. The probability that a type-L inventor mimics a type-H inventor

by charging the high royalty rate is y = 0.15. This finding is noteworthy because it

means that 85 percent of obvious inventions are never challenged because the low roy-

alty rate is set at the competitor’s litigation cost in order to preempt challenges. For

those type-L inventors who charge the high royalty, the probability that a competitor

challenges is x = 0.45.

The simulation results are very robust to changes in the assumed parameters. In

each row of Panel B we vary the one parameter indicated, relative to the baseline

specification. Reducing the assumed R&D cost per patent to $2 million, or increasing

it to $3 million, affects only the implied litigation cost l and development costs (κL, κH).

The baseline cost reduction for the invention is 2.5 percent (calibrated at roughly the

economy-wide rate of total factor productivity growth). The main effect of changing

it to 1 percent or 5 percent is to alter the simulated demand and cost parameters (not

reported) and thus the gains from the patent relative to the total returns to R&D: this

ratio varies from 5 to 19 percent. The results are similar when we vary the assumed

elasticity of demand, down to η = 1 or up to η = 3.

5.1.2 Policy Experiments

In this section we analyze the change in the welfare gains from innovation generated by

counterfactual policy reforms. The pre-reform welfare gain from innovation is defined

as welfare in the baseline patent regime (pre-reform) minus welfare without innovation.

The post-reform welfare gain from innovation is defined analogously. For brevity, we

will refer to these changes in welfare gains from innovation as ‘welfare changes’.

Table 2 summarizes the simulation results for five policy experiments. First, we

frontload post-grant fees in a revenue neutral way. Frontloading raises additional rev-

enue, because all type-L applicants pay the pre-grant fees, whereas only successful

type-L applicants pay the post-grant fees. We use to this revenue to increase the exam-

ination intensity.28 This frontloading reform generates enough extra revenue to double

the examination intensity. The direct effect of the increase in examination intensity

28In these simulations, the parameters are such that we remain in region 1 (Figure 1 in Section 3),
so that the application rate of type-L inventions does not change (α = 1). Raising patent fees so high
that region 2 would become relevant is not politically feasible, and would require us to incorporate the
potential effects of these fees on the supply of innovation.
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is that the patent office detects and denies patent rights to more type-L patents that

apply, which increases welfare. There is also an indirect effect. The increase in exami-

nation intensity raises the probability that a type-L inventor charges the high royalty

(and thus average royalties in the economy) because there is a stronger presumption

by the competitor that a high royalty signals a type-H invention. This indirect effect

reduces welfare, but it is dominated by the direct effect, so that the reform increases

welfare by 1.90 percent, with consumers gaining at the expense of firms (inventor and

competitor).

The second experiment is to cap litigation costs at half the level given by the baseline

simulation. This reform has a very large and positive impact on welfare, 4.92 percent,

and both inventors and consumers gain. The reason is that litigation costs are high

and reducing them saves inventors money when challenged. At the same time, type-L

inventors are less likely to charge the high royalty rate (i.e., y declines from 0.15 to 0.06)

because challenges are more attractive given the lower litigation costs. This experiment

highlights the potential importance of tort reform in the patent arena.29

In the third experiment we ‘turn off’ court challenges entirely (e.g., as would occur

if litigation costs were high enough to violate the challenge credibility constraint). This

reform has a surprisingly small (negative) effect on welfare, which reflects the savings

on the very substantial litigation costs when challenges are feasible. While inventors

benefit – especially those with obvious inventions because they can now charge the high

royalty without fear of being challenged – consumers lose heavily from the consequently

higher output prices. The presence of courts as a second screening device appears much

less significant for welfare than one might have thought, even with perfect courts as

here – essentially because litigation costs are so high.

The fourth experiment replaces the patent system with a pure registration system in

which there is no patent examination but retains the option of challenging the registered

right in court. In this case, we set both pre- and post-grant fees to zero, but the cost

of preparing the application for registration is maintained (as this would be needed as

the basis for any court challenge). This reform reduces welfare substantially, by 3.1

percent, coming at the expense of consumers while benefitting firms.

Lastly, we increase the examination intensity from the baseline value to 0.5 and

0.7, and cover the incremental cost by increasing pre-grant fees. This increases welfare,

with consumers gaining at the expense of firms. Of course, we have assumed a constant

marginal cost of examination, but if costs are convex the welfare gains would be smaller.

29For recent empirical evidence of the impact of tort reform (limited liability) on innovation in the
healthcare sector, see Galasso and Luo (2016).
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Table 2. Policy Experiments with Perfect Courts

Experiment e y x %E∆W %E∆π % E∆CS

Status quo 0.29 0.15 0.45 - - -
Frontloading 0.56 0.24 0.45 1.90 -5.88 5.72
Halving litigation costs 0.29 0.06 0.69 4.92 0.78 8.24
Shutting down courts 0.29 1.0 0 -0.74 42.0 -22.3
Registration system 0 0.14 0.45 -3.10 4.76 -6.50
More stringent examination I 0.50 0.21 0.45 1.49 -4.42 4.49
More stringent examination II 0.70 0.36 0.45 2.91 -8.63 8.76

Note: Changes in welfare, profit and consumer surplus are measured net of the no-invention
levels.

In the baseline model, we assume that perfect courts always uphold type-H inven-

tions and completely invalidate type-L inventions, i.e., all claims in the type-L patent

are revoked. However, in practice the courts typically invalidate only a fraction of

claims. To account for this, we formulated a modified version of the baseline model

with perfects courts to allow for partial invalidation.30 In this model we treat patent

claims as independent of each other, so that if a fraction f of claims is invalidated, the

cost reduction equal to fs is now available to the competitor and the royalty that the

incumbent can extract is only on the remaining proprietary cost reduction of (1−f)s.31

We simulated this alternative model to check robustness of the findings in Table 1

and 2 (results not reported for brevity). Allowing for partial invalidation changes the

simulated parameters in three main ways. First, the fraction of non-obvious inventions

rises from λ = 0.14 to λ = 0.28, and the effectiveness of patent office screening increases

from e = 0.29 to e = 0.35. Second, the implied cost of litigation declines from $1.26

to $0.79 million. Third, the probability that a type-L inventor mimics the type-H

inventor by charging the high royalty rate increases sharply from y = 0.15 to y = 0.40.

In the policy experiments, we again find that frontloading fees, capping litigation costs

and raising examination intensity all increase welfare, and introducing a registration

system reduces it. However, with partial invalidation, shutting off court challenges

actually increases welfare (rather than modestly reducing it as with full invalidation).

The reason is that we are now making court screening imperfect and, with substantial

legal costs, they are no longer worthwhile.

30Details are available on request. We are grateful to John Golden for pointing this out and suggesting
a robustness check with this more realistic specification of the courts. Using information on cases at
the Court of Appeals for the Federal Circuit (Galasso and Schankerman, 2015), the fraction of claims
revoked in cases of patent invalidation is about 75 percent, and we use this figure to calibrate this
model.

31Independence of claims seems a natural assumption for this analysis. A firm has no incentive
to include claims that are substitutes for each other. At the other extreme, if all claims are perfect
complements, the original model applies since loss of any one claim is equivalent to the loss of the entire
patent.
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5.2 Simulations: imperfect courts

5.2.1 A more general screening technology

Many observers argue that patents are “probabilistic” in nature, with court decisions

subject to a considerable degree of randomness (Lemley and Shapiro, 2005). We have

assumed that courts do not make mistakes in assessing validity. In Appendix B we

analyze a more general screening technology where both the patent office and courts

sometimes make mistakes. This technology encompasses as special cases both the basic

model (with perfect courts) and completely random courts (where the probability a

patent is upheld is independent of the invention type, θ). The appendix shows that the

basic insights from the baseline model are robust to this generalization, provided that

court screening is sufficiently accurate for the competitor to challenge when certain of

facing a type-L inventor and not to challenge when certain of facing a type-H inventor.

For the simulation analysis with imperfect courts that follows, we will use a special

case of the more general screening technology. We allow the court to screen out invalid

patents with a probability that lies between one (perfect court) and the probability in

the patent office. In addition, we allow the court and patent office to apply different

rules in the event the evidence is weak. We assume that the patent office only rejects

if it finds strong evidence that the invention is type L. By contrast, the courts apply a

“presumption of validity” that depends on the updated posterior on the invention type,

which in turn depends on the intensity of patent office examination. Other things equal,

when patent office screening is more intensive, the court applies a stronger presumption

that the patent is valid, in the absence of strong evidence against it.

Specifically, with probabilities e1 = e and e2 = β+(1−β)e, respectively, the patent

office and court each receive an independent draw of a signal that reveals the true

invention type with certainty, where β ∈ [0, 1]. The case β = 1 corresponds to the

baseline model of perfect courts. In the absence of a signal revealing the invention to

be of type L, the patent office always accepts the patent, whereas the court upholds

it with probability λ̂ and invalidates it with probability 1 − λ̂, where λ̂ is the poste-

rior probability that the invention is of type H.32 Comparing the simulation results

for perfect and imperfect courts will allow us to check how our assessment of patent

screening institutions, and of the welfare effects of different policy reforms, varies with

the characterization of court behavior.

5.2.2 Simulation results

Table 3 presents the simulated parameters for the model with imperfect courts. We

present results for two different scenarios: low quality courts (β = 1/3) and high quality

32For more details, see Appendix C.5.
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courts (β = 2/3).

Table 3. Simulated Parameters with Imperfect Courts

Panel A. High Quality Courts

λ e l (×106) y x Ratio κL (×106) κH (×106) MCE

0.17 0.30 1.12 0.20 0.39 0.11 1.42 4.32 121

Panel B. Low Quality Courts

λ e l (×106) y x Ratio κL (×106) κH (×106) MCE

0.26 0.34 1.02 0.35 0.32 0.11 1.25 3.83 109

With high quality but imperfect courts, the simulated parameters are very similar

to the case of perfect courts (compare Tables 1 and Panel A, Table 3). The imperfect

court model gives a slightly higher proportion of non-obvious patent applications (λ)

and effectiveness of patent office screening (e). In addition, the probability that a type-

L inventor charges the high royalty (y) is somewhat higher (implying that there is a

smaller probability he preempts a challenge). This is because the imperfect court may

actually uphold the type-L patent, making it more attractive to take the risk of charging

the high royalty. The other parameters are very similar to the earlier results. Panel B

in Table 3 shows that the results are generally robust even with a low-quality court.

The main difference with the perfect court results is that the proportion of non-obvious

inventions nearly doubles, from 0.14 with perfect courts to 0.26 and, not surprisingly,

the probability that a type-L inventor charges the high royalty rate increases sharply

from 0.15 to 0.35. The simulated values of λ and e imply that between 65 and 77 percent

of granted patents are invalid in the specifications with low-quality and high-quality

(imperfect) courts, respectively.

Table 4 presents the simulation results for the policy experiments with both low

and high quality (imperfect) courts. Comparing these results to the model with perfect

courts (Table 2), we observe the same overall pattern emerging. Frontloading fees,

capping litigation costs and increasing examination intensity all generate welfare gains,

while moving to a registration system reduces welfare. The only difference is that,

while shutting down the courts modestly reduced welfare in the case of perfect courts,

the policy actually improves welfare when courts are imperfect, especially when they

are low quality. It is also worth noting that frontloading fees (using the extra revenue

to fund higher examination intensity) generates significantly larger welfare gains when

courts are imperfect (compare Tables 2 and 4).
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Table 4. Policy Experiments with Imperfect Courts

Panel A. High Quality Courts

Experiment e y x %E∆W %E∆π % E∆CS

Status quo 0.30 0.20 0.39 - - -
Frontloading 0.58 0.33 0.39 2.82 -9.14 8.23
Halving litigation costs 0.30 0.08 0.63 5.41 3.13 6.52
Shutting down courts 0.30 1.0 0 1.94 43.66 -17.36
Registration system 0 0.14 0.39 -3.06 10.93 -8.93
More stringent examination I 0.50 0.28 0.39 2.00 -6.26 5.84
More stringent examination II 0.70 0.35 0.39 3.01 -9.43 8.80

Panel B. Low Quality Courts

Experiment e y x %E∆W %E∆π % E∆CS

Status quo 0.34 0.35 0.32 - - -
Frontloading 0.65 0.66 0.32 3.89 -13.82 10.88
Halving litigation costs 0.34 0.13 0.55 5.45 7.55 4.67
Shutting down courts 0.34 1.0 0 6.61 52.23 -11.64
Registration system 0 0.23 0.32 -4.22 16.38 -11.80
More stringent examination I 0.50 0.46 0.32 2.04 -7.02 5.70
More stringent examination II 0.70 0.77 0.32 4.54 -15.64 12.69

6 Extensions

6.1 Heterogeneous invention values

The baseline model assumes that inventions have identical private (and social) value,

but differ in their development cost. The key distinction is between the high type,

which needs patent protection to cover this cost, and the low type, which does not. In

this section we study a modified version of the model where inventions differ in both

value and development cost. The distinction between high and low types is still based

on whether patent rights are needed to induce development, but here this varies with

both cost and value. In this version, as in the baseline, the supply of ideas for inventions

is exogenous.

We show that two key ideas from the baseline model also hold in this context.

First, we cannot screen out low types of a given value without using both examination

and pre-grant fees (i.e., these two instruments are complements). Second, holding the

incentive to invest for high types fixed, frontloading patent fees reduces the set of low

types that apply.

Suppose ideas differ along two dimensions: value, indexed by v ∈ [v, v], and de-

velopment cost κ ∈ [κ, κ]. In the absence of patent protection an idea of value v is
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associated with profit π(v) and welfare w(v). With a patent the inventor earns an ad-

ditional ∆(v) = m(v) + ∆C(v) while welfare is reduced by D(v). Ideas (v, κ) are drawn

from some continuous distribution. Both the inventor and the competitor observe v,

but only the inventor observes κ. Translated to this environment, our patentability

requirement becomes κ > π(v). To remain consistent with our previous terminology,

we refer to types with κ > π(v) as high types and to those with κ ≤ π(v) as low types.

For simplicity, assume that lI = 0 and lC = l(v) < ∆C(v) for all v. Furthermore,

assume that all functions of v are continuous and increasing.

The following proposition characterizes the equilibrium.

Proposition 5. There exists a cutoff v∗, defined by

∆(v∗) = φA + φP , (12)

such that high types never invest for v < v∗. For v ≥ v∗, they invest, apply, activate

and propose F = ∆C(v) if κ ≤ π(v) + ∆(v) − φA − φP and do not invest otherwise.

Similarly, there exist two cutoffs v̂ and ṽ, defined by

∆(v̂) = φP +
φA

1− e
(13)

l(ṽ) +m(ṽ) = φP +
φA

1− e
, (14)

such that low types behave as follows:

(i) for v < v̂: α = 0 and y = 1

(ii) for v̂ ≤ v < ṽ: (a) if challenges are credible, α = α̃(v) and y = 1, (b) if challenges

are not credible, α = y = 1

(iii) for ṽ ≤ v: (a) if challenges are credible, α = 1 and y = ỹ(v), (b) if challenges are

not credible, α = y = 1

where α̃(v) and ỹ(v) are such that the competitor is indifferent between challenging and

not.

This is a straightforward extension of the analysis from the baseline model.33 The

proposition says that high types only invest and apply if their ideas are sufficiently

33The intuition is as follows. For high types, v∗ is the threshold value at which the gains from
patenting exceed the costs, so – provided the development cost is low enough – they apply for and
activate their patent and, as in the baseline model, charge the high royalty. For low types, v̂ is the
corresponding threshold – they earn at most ∆(v) from a patent and pay the post-grant fee, with
probability (1 − e), plus pay the application fee. Thus for v < v̂ they do not apply. If challenges are
not credible, then for any v > v̂, low types always apply and charge the high royalty since they are not
at risk of litigation. If challenges are credible, low types randomize. If v is high enough for the low
royalty l(v) +m(v) (the license fee that preempts challenges plus the extra rent from the incremental
market power) to cover fees, v > ṽ, they always apply and randomize over the royalty rate. If the low
royalty does not generate sufficient revenue (v̂ < v < ṽ), they randomize over application and charge
the high royalty.
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valuable. Low types always invest, and apply for patents at least some of the time if

their ideas are sufficiently valuable. The rate at which they apply, α, depends on v and

on whether challenges are credible given v.34

The application behavior is illustrated in Figure 4 for the case where challenges

are credible for all v ≥ v̂. The figure depicts the space of ideas (v, κ), whose support

is represented by the dashed box. The grey shaded area shows the set of high types

that invest and apply, i.e., those for which π(v) < κ ≤ π(v) + ∆(v) − φP − φA. The

figure also shows how different sets of low types (κ ≤ π(v)) differ in their application

behavior: those with v < v̂ never apply, those with v̂ ≤ v < ṽ randomize over the

application decision, and those with v ≥ ṽ apply with certainty.35 The figure shows

how inventor behavior varies with value, holding patent fees constant. One could easily

add another dimension to the figure to show how the equilibrium varies with patent

fees. It should be clear that changes in fees would have differential effects on high- and

low-value inventors.

Two remarks emerge from this analysis. First, v̂, and thus the set of low types

that apply at least some of the time, does not depend on whether court challenges are

credible (or, equivalently, whether they are available). In other words, court challenges

have no effect on the extensive margin of bad applications (i.e., the interval of values

over which the low types apply); they affect only the intensive margin (i.e., the prob-

ability that they apply). Like in the baseline model, the intuition is that the threat of

challenges cannot completely deter a low type from applying, since this would lead his

(Bayesian) competitor to refrain from challenging.

Second, any change in patent office fees will affect R&D investment decisions. The

level of innovation investment (by both high and low types) is fully characterized by

v∗; clearly, higher fees raise v∗ and reduce investment. (Note that a fee increase leads

the set of types that invest to shrink in both dimensions of the idea space.)

We then have the following results.

Proposition 6. The cutoff on v above which high types apply is always weakly below

the corresponding cutoff for low types: v∗ ≤ v̂, with equality if either e = 0, or φA = 0

34 Formally, let Gv(κ) denote the cumulative distribution function of κ conditional on v. Challenges
are credible for some v ≥ v∗ if and only if (1− λ(v))∆C(v) ≥ l(v), where

λ(v) =
Gv(π(v) + ∆(v)− φA − φP )−Gv(π(v))

Gv(π(v) + ∆(v)− φA − φP )− eGv(π(v))
.

Making the competitor indifferent requires (1− λ̂(v))∆C(v) = l(v), where

λ̂(v) =
Gv(π(v) + ∆(v)− φA − φP )−Gv(π(v))

Gv(π(v) + ∆(v)− φA − φP )−Gv(π(v)) + (1− e)αyGv(π(v))
.

35The assumption l(v) < ∆C(v) ensures that v̂ < ṽ.
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ṽ

α = 1

Figure 4: The equilibrium with continuous types

and e < 1.

Proof. Because ∆(v) is an increasing function and the right-hand side of (13) weakly

exceeds that of (12), we obtain v∗ ≤ v̂. If e = 0, or if φA = 0 and e < 1, the right-hand

sides of the two expressions coincide and so v∗ = v̂.

The first result in Proposition 6 says that there cannot be a value v such that low

types apply but high types do not. The reason is that the high type with κ = π(v) + ε

(invests and) applies for a patent if and only if ∆(v) ≥ φP +φA+ε. Letting ε→ 0, this

is also the condition for low types to ever find applying worthwhile. The second result

in Proposition 6 is the counterpart of Observation 1 from the simple model of Section

2. It says that, in the absence of either patent examination or pre-grant fees, we cannot

deter low types with ideas of value v without also deterring high types with ideas of the

same value. This is related to the fact that, as argued above, court challenges do not

affect the extensive margin of bad applications; hence, the set of low types that apply

at least some of the time when there is no examination is the same as when there is

neither examination nor court review. Together with v∗ ≤ v̂, this implies that for e = 0

the two cutoffs must coincide.

Proposition 7. Fix v∗ and e. Then applications from low types are minimized by

frontloading fees, i.e., setting φP = 0 and φA = ∆(v∗).

Proof. See Appendix A.

Proposition 7 is the counterpart of Observation 2 from Section 2. It says that, if

we fix the level of innovation in the economy at v∗ (and hence the sum of patent office

fees at φA + φP = ∆(v∗)) and the examination intensity at some e, frontloading fees
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reduces the number of applications filed by low types. This is because the cutoffs v̂

and ṽ are increasing in φA when holding φA + φP fixed – for the same reason as in the

baseline model, namely, that low types prefer post-grant fees to pre-grant fees whereas

high types are indifferent.36

6.2 Endogenous inventions

One possible objection to our patentability requirement is that it appears to encourage

high-cost inventions. This concern does not apply to our model in which the population

of obvious (low cost) and non-obvious (high cost) inventions is given exogenously. The

objection more naturally arises in a different environment where the mix of inventions

is endogenous. However, even in such an environment, our patentability requirement

can be justified.

To see this, consider the two-dimensional model from the previous subsection but

suppose that, instead of continuous support, we have v ∈ {vL, vH} and κ ∈ {κL, κH}.
That is, as in the baseline model there are two levels of development cost, but now

there are also two levels of value, with associated profits π(vL) and π(vH) > π(vL).

Suppose the inventor can choose between different ideas but when deciding whether

to invest only observes κ and not v. Assume, however, that κ is a signal of value: that

is, letting pκ ≡ Pr(v = vH |κ), pκH > pκL . Then expected welfare can be written

E(w(v)|κ) = pκw(vH) + (1− pκ)w(vL), where w(v) denotes welfare when the invention

has value v. If E(w(v)|κH)− κH > E(w(v)|κL)− κL, or equivalently

(pκH − pκL) (w(vH)− w(vL)) > κH − κL,

the planner wants to encourage the inventor to go for ideas with κ = κH , even though

they have a high development cost. That is, the planner would like to promote “ambi-

tious” research if it generates a sufficiently high payoff in a probabilistic sense.

7 Concluding remarks

This paper develops a framework to examine how governments can improve the quality

of patent screening, incorporating four policy instruments: patent office examination,

pre- and post-grant fees, and challenges in the courts. The analysis yields three key

theoretical results. First, if the patent office makes no examination effort (pure regis-

tration system), or if the pre-grant fee is zero and examination is imperfect, complete

screening (only high types obtaining patents) cannot be achieved. Thus pre-grant fees

36As shown in the proof of Proposition 7, frontloading fees leaves α̃(v) unaffected. Hence, if v̂
increases to v̂′ and ṽ to ṽ′, applications by low types decrease for v ∈ [v̂, v̂′] (from α̃(v) to 0) and
v ∈ [ṽ, ṽ′] (from 1 to α̃(v)) while remaining unchanged for all other values of v.
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and examination are complements, not substitutes as one might think. Second, even if

courts are mistake-free, they cannot eliminate all bad patents that are issued because

in equilibrium not all such patents are challenged. This result raises serious doubts

about over-reliance on the court system to weed out obvious patents. Third, when

examination is not sufficiently rigorous to achieve complete screening, we show that a

social planner would always frontload fees.

We simulate the model, calibrated on U.S. patent and litigation data, to identify key

parameters and study the welfare effects of different policy reforms. The simulations

indicate that 75 percent or more of patent applications are low quality in the sense that

they are made on inventions that would be developed even without patent rights. At

the same time, the patent office only screens out about 30 percent of these low-quality

applications. Our simulations imply that between 65 and 81 percent of granted patents

are invalid, depending on the specification of the courts. These findings highlight the

crisis in patent screening and the need to develop effective policies to address it. The

simulations show that intensifying patent office examination, frontloading patent fees,

and capping litigation costs all generate welfare gains, while replacing examination with

a pure registration system reduces welfare.

We believe the framework developed in this paper can be used to study the welfare

impacts of tort reform and patent litigation insurance, both of which have featured

prominently in the public debate. Our model can potentially provide a useful analytical

platform for studying other patent reforms as well. In principle, the simulations of the

model, or suitable extensions of it, could also be calibrated for other patent systems.

This might allow one to analyze the welfare effects of more ambitious, international

patent reforms, such as harmonized screening.
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APPENDICES – FOR ONLINE PUBLICATION

Appendix A Proofs

Proposition 1. If φP > ∆ − φA/(1 − e), the type-L inventor does not apply and the

competitor does not challenge. If challenges are credible and φP ≤ ∆ − φA/(1 − e),
there is a semi-separating equilibrium in which:

(i) the type-H inventor invests, applies, activates, and proposes FH = ∆C

(ii) the type-L inventor always randomizes over either

(a) the decision whether to apply or not (probabilities α and 1− α), or

(b) the license fee to propose, FL ∈ {∆C , lC} (probabilities y and 1− y),

such that (1− λ̂)∆C = lC ; he always activates (ρ = 1)

(iii) the competitor randomizes over the decision whether to challenge or not (proba-

bilities x and 1 − x) if offered F = ∆C and never challenges if offered F = lC ,

with

x =


x̃ ≡ ∆C − lC

∆ + lI
for φP < lC +m− φA

1− e

x̂ ≡ ∆− φP − φA/(1− e)
∆ + lI

for lC +m− φA
1− e

≤ φP ≤ ∆− φA
1− e

This semi-separating equilibrium requires that the high type make nonnegative profit,

∆− (k − π)− xlI − φA − φP ≥ 0.

Proof. We first derive the equilibrium behavior of type-L inventor and competitor as-

suming that the type-H inventor invests, applies, activates, and proposes FH = ∆C

in Lemma 1. We then show under what conditions type H indeed finds this behavior

optimal in Lemma 2.

Lemma 1. Suppose (5) holds and the type-H inventor invests, applies, activates, and

proposes FH . Then, the equilibrium behavior of the type-L inventor and the competitor

can be characterized as follows:

(i) If φP ≥ ∆− φA/(1− e) [Region 3], the type-L inventor does not apply (α = 0),

and the competitor does not challenge (x = 0). If granted a patent the type-L

inventor would always propose FH (y = 1).
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(ii) If φP < ∆−φA/(1−e), the type-L inventor applies with strictly positive probability

(α > 0) and randomizes such that(
1− λ

λ+ (1− λ) (1− e)αρy

)
∆C = lC . (15)

The competitor always accepts when offered F = lC (x = 0); she always challenges

the patent when offered F /∈ {lC , FH} (x = 1). When offered F = FH she

randomizes between accepting and challenging. Specifically:

(a) for φP < lC + m − φA/(1 − e) [Region 1], the type-L inventor chooses

α = ρ = 1 and y ∈ (0, 1) solving (15). The competitor challenges with

probability x such that

(1− x)∆− xlI = lC +m; (16)

(b) for φA > 0 and lC + m − φA/(1 − e) < φP < ∆ − φA/(1 − e) [Region 2],

the type-L inventor chooses ρ = y = 1 and α ∈ (0, 1) solving (15). The

competitor challenges with probability x such that

(1− e) [(1− x)∆− xlI − φP ] = φA; (17)

(c) for φA = 0 and lC + m < φP < ∆, the type-L inventor chooses y = 1 and

(α, ρ) ∈ [0, 1]2 solving (15). The competitor challenges with probability x

such that

(1− x)∆− xlI = φP . (18)

Proof of Lemma 1. For φP ≥ ∆− φA/(1− e), type L’s payoff from applying is weakly

less than his payoff from not applying even if there are no challenges, so (α = 0, x = 0)

is an equilibrium, establishing (i). (This equilibrium is unique for φP > ∆−φA/(1−e).)
In what follows, we first show that for φP < ∆ − φA/(1 − e), there is no equilibrium

in which α = 0, ρ = 0, or y = 0, that there is none in which α = ρ = y = 1, and that

there is also none in which x = 0 or x = 1, implying that the equilibrium must be in

mixed strategies. We then prove the more specific claims made in (ii.a)-(ii.c).

Suppose first there were an equilibrium with α = 0, ρ = 0, or y = 0 when φP <

∆ − φA/(1 − e). Then the competitor’s belief when observing FH = ∆C would be

λ̂ = 1, and hence she would not challenge. But this means that the type-L inventor

could secure a strictly positive expected payoff of (1−e)(∆−φP )−φA > 0 by applying,

activating and offering FH , contradicting the optimality of α = 0 or ρ = 0. Moreover,

by offering F = ∆C type L obtains a higher payoff than by offering F = lC (because

∆C > lC), contradicting the optimality of y = 0. Hence, under the assumed condition
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on φP , in any equilibrium we must have α > 0, ρ > 0, and y > 0. Next, suppose

there were an equilibrium with α = ρ = y = 1. Then λ̂ = λ(e), and by (5), the

challenger would always challenge. But then type L would be better off deviating in

some dimension. (If φP > 0, type L would be better off not activating or not applying.

If φP = 0 < lC +m, type L would be better off offering 0 < F ≤ lC .)

Now consider the competitor’s decision to challenge. If there were an equilibrium

in which she never challenges (x = 0), then all type-L inventors would apply, activate

and offer FH (α = ρ = y = 1). But in that case, (5) implies that the competitor would

strictly prefer to challenge. If there were an equilibrium in which she always challenges

(x = 1), then type L would prefer not to apply, in which case the competitor would be

better off not challenging.

Hence, the equilibrium must be in mixed strategies. For the competitor to be

indifferent between challenging and not, his beliefs about the type of inventor he faces

must be such that the payoff from challenging is the same as the payoff from not

challenging, i.e., (1− λ̂)∆C = lC . Using the definition of λ̂ yields (15). The conditions

for the type-L inventor to be indifferent depend on parameters and are specified below.

Claim (ii.a) [φP < lC +m−φA/(1− e)]: Because the competitor always accepts the

offer F = lC , the type-L inventor can guarantee himself a payoff of lC + m following

activation. Hence, if φP < lC +m, type L strictly prefers activating to not activating,

implying ρ = 1. By the same argument, φP < lC + m − φA/(1 − e) implies that type

L strictly prefers applying to not applying, so α = 1. The only randomization variable

that remains is y. For the type-L inventor to be indifferent between offering F = lC

and F = ∆C , both must procure him the same payoff. This requires π + lC + m =

π + (1− x)∆− xlI , or (16).

Claim (ii.b) [φA > 0 and lC + m − φA/(1 − e) < φP < ∆ − φA/(1 − e)]: Because

lC + m − φA/(1 − e) < φP , the type-L inventor cannot break even offering F = lC ;

hence, y = 1. To see that type L will necessarily randomize over the application decision

rather than the activation decision, suppose to the contrary ρ < 1. This would require

(1 − x)∆ − xlI = φP . But in that case, type L’s payoff from applying would be zero,

and given φA > 0 he would prefer not to apply. Hence, ρ = 1. The only randomization

variable that remains is α. For type L to be indifferent between applying and not, it

must be that π = π + (1− e)[(1− x)∆− xlI − φP ]− φA, or (17).

Claim (ii.c) [φA = 0 and lC + m < φP < ∆]: Because φP > lC + m, the inventor

will never offer F = lC , as he would be sure to make a loss then. Hence, y = 1. In

any equilibrium in which the type-L inventor is indifferent between activating and not,

which requires π = π+(1−e)[(1−x)∆−xlI−φP ], or (18), his payoff from applying for

a patent will be zero. Because φA = 0, he will also be indifferent between applying and
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not. Hence, any combination of α and ρ which (given y = 1) solves (15) constitutes an

equilibrium.

Remark: For the case φA = (1− e)(∆−φP ), type L is indifferent between applying

and not. Thus in principle there is also an equilibrium in which type L applies with

strictly positive probability α > 0 satisfying (15) and the competitor never challenges

(x = 0). We ignore this equilibrium as it seems uninteresting and concerns a knife-edge

case.

For the purposes of the next lemma, let

φ ≡
(

1− e
e

)[
k − π − (∆C − lC)∆

∆ + lI

]
φ ≡

(
1− e
e

)
[k − π] .

Lemma 2. Suppose (5) holds. The type H inventor invests, applies, activates, and

proposes FH = ∆C if φP ≤ h(φA), where

h(φA) =



∆− (k − π)− (∆C − lC)lI
∆ + lI

− φA for φA ≤ φ

∆−
(

1 +
lI
∆

)
(k − π)−

(
1− elI

(1− e)∆

)
φA for φ < φA ≤ φ

∆− (k − π)− φA for φA > φ,

(19)

and does not invest otherwise.

Proof of Lemma 2. The type-H inventor’s payoff from investing, applying, activating

and proposing FH = ∆C is

ΠH = ∆− (k − π)− xlI − φP − φA.

Consider first the case where φP < lC +m− φA/(1− e), so that x = x̃. Then ΠH ≥ 0

if and only if

φP ≤ ∆− (k − π)− (∆C − lC)lI
∆ + lI

− φA. (20)

Next, consider the case where φP > ∆ − φA/(1 − e), so that x = 0. Then, ΠH ≥ 0 if

and only if

φP ≤ ∆− (k − π)− φA. (21)

Finally, consider the intermediate case where lC+m−φA/(1−e) < φP < ∆−φA/(1−e),
so that x = x̂. Then ΠH ≥ 0 if and only if

φP ≤ ∆− (k − π)− lI(∆− φP − φA/(1− e))
∆ + lI

− φA
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⇔ φP ≤ ∆−
(

1 +
lI
∆

)
(k − π)−

(
1− elI

(1− e)∆

)
φA. (22)

The threshold φ is obtained by equalizing the right-hand sides of φP < lC+m−φA/(1−
e) and (20):

lC +m− φA/(1− e) = ∆− (k − π)− (∆C − lC)lI
∆ + lI

− φA.

Solving for φA yields φ. The threshold φ is obtained by equalizing the right-hand sides

of φP < ∆− φA/(1− e) and (21):

∆− φA/(1− e) = ∆− (k − π)− φA.

Solving for φA yields φ.

What remains to be shown is that type H finds it optimal to propose FH = ∆C ,

knowing that this results in a challenge with probability x. His best deviation is to

F = lC , which is the highest license fee that would avoid a challenge; all other license

fee offers are either rejected or lead to a challenge with probability one. To see that

deviating to F = lC is unprofitable for type H, note that in any equilibrium with x > 0,

type L is either indifferent between ∆C and lC or strictly prefers ∆C . Because type H

knows that he will win in court while type L knows he will lose, it follows that type H

must strictly prefer ∆C over lC .

This completes the proof.

Proposition 2. Suppose the type-H inventor invests, i.e., ΠH ≥ 0, and challenges are

credible. Then:

(i) An increase in φA or φP weakly decreases applications by type L (α), weakly

decreases the rate of challenges (x), and weakly increases the probability that type

L charges the high license fee (y).

(ii) An increase in e has ambiguous effects on applications by type L (α), weakly

decreases the rate of challenges (x), and weakly increases the probability that type

L charges the high license fee (y).

Proof. Claim (i): Within each of the three regions shown in Figure 1, α and y are

constant with respect to φA and φP (α̃ and ỹ do not depend on the fees). An increase

in φA or φP can move the equilibrium from region 1 to region 2, in which case α

decreases from α = 1 to α = α̃ < 1 and y increases from y = ỹ to y = 1, or from region

2 to region 3, in which case α decreases from α = α̃ to α = 0 and y remains constant.

The rate of challenges x is constant with respect to φA and φP within region 1 (x̃ does
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not depend on the fees). Within region 2, x is decreasing in φA and φP (differentiating

x̂(φA, φP ) yields ∂x̂/∂φA = −1/[(1− e)(∆ + lI)] ≤ 0 and ∂x̂/∂φP = −1/(∆ + lI) < 0).

What remains to be shown is that x̃ ≥ x̂(φA, φP ) for any combination of fees in region

2, i.e., (φA, φP ) such that lC + m − φA/(1 − e) ≤ φP ≤ ∆ − φA/(1 − e). Since x̂ is

decreasing in φA and φP , its maximum is attained for some combination of fees such

that lC +m− φA/(1− e) = φP . For any (φA, φP ) satisfying this equality we have

x̂(φA, φP )|lC+m−φA/(1−e)=φP =
∆C − lC
∆ + lI

= x̃.

Hence, x̂(φA, φP ) ≤ x̃ for lC +m− φA/(1− e) ≤ φP .

Claim (ii): Within region 1, α and x are constant with respect to e (α = 1 and

x = x̂, neither of which depends on e), while y increases with e: differentiating ỹ with

respect to e yields
∂ỹ

∂e
=

λlC
(1− λ)(∆C − lC)(1− e)2

> 0.

An increase in e can move the equilibrium from region 1 to region 2, in which case α

decreases from α = 1 to α = α̃ < 1, x decreases from x = x̃ to x = x̂ ≤ x̃ (the inequality

having been established in the proof of Claim (i)), and y increases from y = ỹ to y = 1.

Within region 2, α is increasing and x is decreasing in e: differentiating α̃ and x̂ with

respect to e yields

∂α̃

∂e
=

λlC
(1− λ)(∆C − lC)(1− e)2

> 0,

∂x̂

∂e
= − φA

(1− e)2(∆ + lI)
≤ 0;

y is constant in e (y = 1). An increase in e can move the equilibrium from region 2 to

region 3, in which case α decreases from α = α̃ to α = 0 and x from x = x̂ to x = 0,

while y remains constant at y = 1.

Proposition 4. Suppose e < e < ē. Welfare maximization always entails fees such

that φA ≥ (1 − e)(lC + m − φP ) (region 2). If ∆C > (lC/(lC + lI))D, welfare is

maximized by setting φP = 0 and φA such that ΠH = 0, thus minimizing challenges.

If ∆C < (lC/(lC + lI))D, welfare is maximized by setting φA = (1 − e)(lC + m − φP )

and 0 ≤ φP ≤ min{lC +m, [∆− (k − π)− x̃lI − (1− e)(lC +m)]/e}, thus maximizing

challenges.

Proof. Notice that within region 1, welfare does not depend on either φA or φP , as

α = 1, x = x̃, and y = ỹ are all constant in φA and φP . Similarly, within region 2,

welfare depends on φA and φP only through x = x̂(φA, φP ) (which we make explicit

by including the fees as arguments) and not through α = α̃ or y = 1. Thus the

welfare maximization problem is reduced to a choice between W ∗1 ≡ W (1, x̃, ỹ) and
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W ∗2 ≡ maxφA≥0,φP≥0W (α̃, x̂(φA, φP ), 1) subject to lC +m−φA/(1− e) ≤ φP ≤ h(φA),

where h(φA) was defined in the proof of Lemma 2 (recall that φP ≤ h(φA) ⇔ ΠH ≥ 0).

Notice also that αy is the same in regions 1 and 2, as αy = ỹ in region 1, αy = α̃ in

region 2, and α̃ = ỹ.

The proof proceeds as follows. We first show that, keeping αy fixed, welfare is

decreasing in α. Together with the fact that x̃ ≥ x̂(φA, φP ) for any (φA, φP ) in region

2, with equality for φA = (1 − e)(lC + m − φP ) (see the proof of Proposition 2), this

implies that W ∗2 > W ∗1 , so that the welfare-maximizing combination of fees lies in region

2. Second, we show that fixing αy (and thus λ̂) at its equilibrium value in regions 1

and 2, welfare is decreasing in x if and only if ∆C > (lC/(lC + lI))D. Third, we show

that h′(φA) < 0 in region 2 for e < e < ē, which is a useful property for what follows.

We then maximize welfare over all combinations of fees lying within region 2.

Claim 1: For any (α, y) ∈ (0, 1]2 and (α′, y′) ∈ (0, 1]2 such that αy = α′y′,

W (α, x, y) ≥W (α′, x, y′) if and only if α ≤ α′. Rewriting W we have

W (α, x, y) = 2π + S − λ(D + x(lC + lI) + k + γ(e))

+ (1− λ)
(
(1− e)αyx(D − (lC + lI))− α[(1− e)D + γ(e)]

)
. (23)

For αy = α′y′, we have W (α, x, y)−W (α′, x, y′) = (1−λ)(α′−α)[(1− e)D+ γ(e)] ≥ 0

if and only if α ≤ α′.
Claim 2: (∂/∂x)W (α, x, y)|αy=α̃ < 0 if and only if ∆C > (lC/(lC + lI))D. We have

∂W

∂x
= −λ(lC + lI) + (1− λ)(1− e)αy[D − (lC + lI)]

= (1− λ)(1− e)αyD −
[
λ+ (1− λ)(1− e)αy

]
(lC + lI).

Using the definition of λ̂ in (4), we can rewrite this as

∂W

∂x
=
[
λ+ (1− λ)(1− e)αy

](
(1− λ̂)D − (lC + lI)

)
.

By Proposition 1, in the equilibrium in regions 1 and 2 we have 1− λ̂ = lC/∆C . Hence,

∂W

∂x
< 0 ⇔ lC

∆C
D − (lC + lI) < 0 ⇔ ∆C >

(
lC

lC + lI

)
D.

Claim 3: h′(φA) < 0 for lC +m−φA/(1− e) ≤ φP ≤ ∆−φA/(1− e) and e < e < ē.

From (19) we have that, in region 2,

h′(φA) = −(1− e)∆− elI
∆

, (24)

which is negative if and only if (1− e)∆ > elI . To establish that this condition holds,

we first show that e > e implies that h(φ) > 0. By definition of φ,

h(φ) = ∆− x̃lI − (k − π)− φ (25)

= lC +m−
φ

1− e
. (26)
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Replacing φ in (26) we have that

h(φ) = lC +m− 1

e
[lC +m−∆ + x̃lI + k − π] > 0

⇔ (1− e)(lC +m) < ∆− x̃lI − (k − π)

⇔ e > e.

Next, replacing φ in (25) yields

h(φ) = ∆− (k − π)− x̃lI −
1− e
e

[k − π − x̃∆]

= ∆− k − π
e

+
x̃

e
[(1− e)∆− elI ].

Since ∆ − (k − π)/e < 0 by the assumption that e < ē and we have just established

that h(φ) > 0 when e > e, it must be that (1− e)∆ > elI , and hence that h′(φA) < 0

when e < e < ē.

Having established these claims, we now solve for the welfare-maximizing fees. The

planner’s problem can be written as

max
φA≥0,φP≥0

W (α̃, x̂(φA, φP ), 1)

subject to

{
φA ≥ (1− e)(lC +m− φP ) [µ1]
φP ≤ h(φA) [µ2]

where µ1 and µ2 are the multipliers associated with the constraints. The first-order

conditions are

∂W

∂x

∂x̂

∂φA
+ µ1 + µ2h

′(φA) = 0 (27)

∂W

∂x

∂x̂

∂φP
+ µ1(1− e)− µ2 = 0. (28)

We have to distinguish two cases: ∂W/∂x < 0 and ∂W/∂x > 0.

Case 1: ∂W/∂x < 0. Combining h′(φA) < 0 with the fact that ∂W/∂x < 0 and

∂x̂/∂φA < 0, (27) implies µ2 > 0, so the constraint φP ≤ h(φA) must be binding at the

optimum. Using (27) to replace µ1, (28) becomes

∂W

∂x

∂x̂

∂φP
− (1− e)

(
∂W

∂x

∂x̂

∂φA
+ µ2h

′(φA)

)
− µ2 =

∂W

∂x

(
∂x̂

∂φP
− (1− e) ∂x̂

∂φA

)
− µ2

(
(1− e)h′(φA) + 1

)
.

Noting that ∂x̂/∂φP = (1 − e)∂x̂/∂φA and substituting for h′(φA) from (24), this

expression simplifies to

−µ2

[
1− (1− e)∆− elI

∆

]
= −µ2

e(∆ + lI)

∆
< 0.
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Hence, when evaluated at the binding constraint φP ≤ h(φA), the objective is decreasing

in φP . It follows that the optimal solution is such that φP = 0 and h(φA) = φP = 0

(which is equivalent to ΠH = 0) as claimed.

Case 2: ∂W/∂x > 0. Combining h′(φA) < 0 with the fact that ∂W/∂x > 0 and

∂x̂/∂φA < 0, (27) implies µ1 > 0, so the constraint φA ≥ (1− e)(lC +m−φP ) must be

binding at the optimum. We have

W (α̃, x̂(φA, φP ), 1)|φA=(1−e)(lC+m−φP ) = W (α̃, x̃, 1),

which is constant in (φA, φP ). Hence, any combination of fees such that φA = (1 −
e)(lC + m − φP ), φA ≥ 0, φP ≥ 0, and φP ≤ h(φA) is a solution. Combining the

three inequalities and noting that lC +m− φA/(1− e) and h(φA) intersect at φ yields

0 ≤ φP ≤ min{lC +m,h(φ)} = min{lC +m, [∆− (k−π)− x̃lI− (1−e)(lC +m)]/e}.

Proposition 7. Fix v∗ and e. Then applications from low types are minimized by

frontloading fees, i.e., setting φP = 0 and φA = ∆(v∗).

Proof. Fixing v∗, we have φA + φP = ∆(v∗). Then v̂ and ṽ solve

∆(v̂) = ∆(v∗) +

(
e

1− e

)
φA

l(ṽ) +m(ṽ) = ∆(v∗) +

(
e

1− e

)
φA.

Because by assumption ∆, l, and m are increasing functions, v̂ and ṽ increase with φA.

Given the nonnegativity constraint on φP , v̂ and ṽ are thus maximized for φA = ∆(v∗)

and φP = 0.

To complete the proof, we show that α̃(v) depends only on the sum of pre- and

post-grant fees and not on how this sum is apportioned. For the competitor to be

indifferent, it must be that, for all v, (1− λ̂(v))∆C(v) = l(v). Using the expression for

λ̂(v) in footnote 34, α̃(v) is given by the α that solves[
1− Gv(π(v) + ∆(v)− φA − φP )−Gv(π(v))

Gv(π(v) + ∆(v)− φA − φP )−Gv(π(v)) + (1− e)αyGv(π(v))

]
∆C(v) = l(v).

Thus, for φA + φP = ∆(v∗),

α̃(v) =

(
Gv(π(v) + ∆(v)−∆(v∗))−Gv(π(v))

(1− e)Gv(π(v))

)(
l(v)

∆C(v) + l(v)

)
is invariant with respect to φA and φP .

Appendix B A more general screening technology

In this appendix, we introduce a more general screening technology that allows for both

type-I and type-II errors at both the level of the patent office and the courts, and we
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examine how our results extend to that case. Suppose the patent office and the courts

review applications with intensity e1 and e2, respectively. The intensity of review

equals the probability that they find out the inventor’s true type. With probability

1 − ei, i = 1, 2, they find no strong evidence either way, in which case the patent

office allows the application with probability q1 while the courts uphold the patent

with probability q2. This leads to stage-i probabilities of acceptance and rejection for

each type of inventor given in Table B.1, with i = 1, 2, stage 1 corresponding to patent

office review and stage 2 corresponding to court review. Our basic model is a special

case of this setup with e1 = e, q1 = 1, and e2 = 1 (q2 is indeterminate). Assume

(1− e2)(1− q2)∆C < lC < (e2 + (1− e2)(1− q2))∆C ; otherwise the competitor either

would not want to challenge even when certain of facing a type-L inventor or would

want to challenge even when certain of facing a type-H inventor.

Table B.1: Probability of acceptance and rejection at review stage i by type

Acceptance Rejection

Type H ei + (1− ei)qi (1− ei)(1− qi)
Type L (1− ei)qi ei + (1− ei)(1− qi)

B.1 No challenges

Consider first the case where challenges are not possible. Then the two types of inven-

tors have the following expected payoff from investing and applying:

ΠH = (e1 + (1− e1)q1)(π + ∆− φP ) + (1− e1)(1− q1)π − k − φA

ΠL = (1− e1)q1(π + ∆− φP ) + (e1 + (1− e1)(1− q1))π − φA.

Fixing the sum of fees, φA + φP , both types now prefer post-grant to pre-grant fees.

However, type L has a stronger preference for post-grant fees than type H. To see this,

we can compute the slope of the iso-profit lines:

∂ΠH/∂φA
∂ΠH/∂φP

=
1

e1 + (1− e1)q1

∂ΠL/∂φA
∂ΠL/∂φP

=
1

(1− e1)q1
.

For any e1 > 0, type L’s iso-profit lines are steeper than type H’s. To obtain a one

dollar reduction in φA, the type-L inventor is willing to accept a 1/[(1 − e1)q1] dollar

increase in φP , while the type-L inventor is willing to accept only a smaller increase of

1/[e1 + (1− e1)q1] dollars.

The type-L inventor invests if and only ΠH ≥ 0. The type-L inventor always

invests; he applies for a patent if ΠL ≥ π. Thus the condition for full screening is
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ΠH ≥ 0 ≥ ΠL − π, or

(e1 + (1− e1)q1)(∆− φP )− (k − π) ≥ φA ≥ (1− e1)q1(∆− φP ).

A necessary condition is

e1 ≥
k − π

∆
.

That is, the minimum examination intensity required to achieve full screening in the

absence of court challenges is the same as in the basic model.

B.2 Challenges

Now consider the possibility of court challenges. Suppose type H invests and applies;

moreover, suppose that if he is successful in obtaining a patent, he activates it and

charges a license fee FH . Type H’s expected payoff then is

ΠH = (e1 + (1− e1)q1)
[
x
[
(e2 + (1− e2)q2)(π + ∆) + (1− e2)(1− q2)π − lI

]
+ (1− x)(π +m+ FH)− φP

]
+ (1− e1)(1− q1)π − k − φA, (29)

where x is the rate of challenges given FH . The competitor’s belief that an activated

patent is valid when a license is offered at fee FH is

λ̂ =
λ(e1 + (1− e1)q1)

λ(e1 + (1− e1)q1) + (1− λ)(1− e1)q1αρy
. (30)

The lower bound of λ̂ is attained at αρy = 1 and given by

λ =
λ(e1 + (1− e1)q1)

λ(e1 + (1− e1)q1) + (1− λ)(1− e1)q1
.

Challenges are credible if and only if

π −∆C ≤ λ [(e2 + (1− e2)q2)(π −∆C) + (1− e2)(1− q2)π]

+ (1− λ) [(1− e2)q2(π −∆C) + (e2 + (1− e2)(1− q2))π]− lC (31)

or

[1− (1− e2)q2 − e2λ]∆C ≥ lC . (32)

When challenges are not credible, the outcome is the same as in the absence of chal-

lenges (see the previous subsection). The equilibrium when challenges are credible is

characterized in the following proposition.

Proposition 8. Consider the generalized screening technology specified in Table B.1.

If challenges are credible and φP ≤ ∆ − φA/((1 − e1)q1), there is a semi-separating

equilibrium in which:
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(i) the type-H inventor invests, applies, activates, and proposes FH = ∆C ;

(ii) the type-L inventor always randomizes over either

(a) the decision whether to apply or not (probabilities α and 1− α), or

(b) the license fee to propose, FL ∈ {∆C , lC +(1−e2)q2∆C} (probabilities y and

1− y),

such that [λ̂(1 − e2)(1 − q2) + (1 − λ̂)(e2 + (1 − e2)(1 − q2))]∆C = lC ; he always

activates (ρ = 1);

(iii) the competitor randomizes over the decision whether to challenge or not (prob-

abilities x and 1 − x) if offered F = ∆C and never challenges if offered F =

lC + (1− e2)q2∆C , with

x =


x̃ for φP ≤ lC +m+ (1− e2)q2∆C −

φA
(1− e1)q1

x̂ for lC +m+ (1− e2)q2∆C −
φA

(1− e1)q1
< φP ≤ ∆− φA

(1− e1)q1
;

where

x̃ =
(e2 + (1− e2)(1− q2))∆C − lC
(e2 + (1− e2)(1− q2))∆ + lI

x̂ =
∆− φP − φA/[(1− e1)q1]

(e2 + (1− e2)(1− q2))∆ + lI
,

provided (e1 + (1− e1)q1)[(1−x(1− e2)(1− q2))∆−xlI −φP ]− (k−π)−φA ≥ 0. If

φP > ∆− φA/((1− e1)q1), the type-L inventor does not apply and the competitor does

not challenge.

Proof. The proof is similar to that of Proposition 1; we therefore focus on the key points

here. Suppose type H invests, applies, activates and charges FH = ∆C . Consider the

behavior of type L in the case where challenges are credible, i.e., (32) holds, and fees

are sufficiently low as to make applying and activating profitable (i.e., α = ρ = 1).

Let us look for an equilibrium in which type L randomizes over the license fee FL as

follows:

FL =

{
∆C with probability y

F̃ with probability 1− y,

where F̃ is chosen such that the competitor does not find it worthwhile to challenge.

The competitor’s beliefs on the equilibrium path are λ̃(FH) = λ̂ and λ̃(F̃ ) = 0.

The out-of-equilibrium belief most likely to support the equilibrium is λ̃(F ) = 0 for
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F 6= FH , F̃ . For the competitor to refrain from challenging when observing F 6= FH

despite assigning probability 1 to the patent being invalid, it must be that

(1− e2)q2(π −∆C) + (e2 + (1− e2)(1− q2))π − lC ≤ π − F.

The highest fee that satisfies this inequality is

F = lC + (1− e2)q2∆C .

Let s(F ) ∈ [0, 1] denote the competitor’s probability of challenging the patent when

observing a license fee offer F . Sequential rationality requires s(F ) = 0 for F ≤ F and

s(F ) = 1 for F > F , F 6= FH . Thus, F̃ = F . We also have s(FH) = x, which depends

on λ̂. For the type-L inventor to be indifferent between offering FH and F , it must be

that

π +m+ F = x[(1− e2)q2(π + ∆) + (e2 + (1− e2)(1− q2))π − lI ]

+ (1− x)(π +m+ FH).

Replacing F and FH yields

x =
(e2 + (1− e2)(1− q2))∆C − lC
(e2 + (1− e2)(1− q2))∆ + lI

= x̃.

For the competitor to be willing to randomize between challenging and not, it must be

that (31) holds with equality when replacing λ by λ̂, i.e.,

(1− (1− e2)q2 − e2λ̂)∆C = lC . (33)

Finally, we need to check that the type-H inventor has no incentive to deviate. The

best deviation would be to F = F . But since x is chosen so as to make the type-L

inventor indifferent between FH and F , and type H has a higher probability of winning

in court than type L, type H must strictly prefer FH to F .

The above equilibrium was derived under the assumption that fees are sufficiently

low for the type-L inventor to find it profitable to apply. Since the type-L inventor’s

payoff in this equilibrium is equal to his payoff when offering F , this requires

φP ≤ lC +m+ (1− e2)q2∆C − φA/[(1− e1)q1]. (34)

Suppose instead (34) does not hold. Then, the above strategy profile cannot be part

of an equilibrium. However, if the type-L inventor’s payoff from applying is positive

when there are no challenges, i.e.,

φP ≤ ∆− φA/[(1− e1)q1], (35)
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then type L will randomize over the decision to apply, and do so such that (33) holds.

The competitor chooses x to make the type-L inventor indifferent between applying

and not:

π = (1− e1)q1

[
x[(1− e2)q2(π + ∆) + (e2 + (1− e2)(1− q2))π − lI ]

+ (1− x)(π +m+ ∆C)
]

+ (e1 + (1− e1)(1− q1))π − φA.

Solving for x yields

x =
∆− φP − φA/[(1− e1)q1]

(e2 + (1− e2)(1− q2))∆ + lI
= x̂.

If (35) is not satisfied, type L does not apply.

To conclude the proof, let us check whether type H finds it profitable to invest in

R&D. Using FH = ∆C , the expression for ΠH in (29) can be rewritten as

ΠH = (e1 + (1− e1)q1)
[
(1− x(1− e2)(1− q2))∆− xlI − φP

]
− (k − π)− φA.

Letting h(φA) ≡ ΠH/(e1 + (1 − e1)q1) + φP , we have that ΠH ≥ 0 if and only if

h(φA) ≥ φP . Substituting the equilibrium values of x in the different regions, we

obtain

h(φA) =


h1(φA) for φA ≤ φ
h2(φA) for φ < φA ≤ φ
h3(φA) for φA > φ,

where

h1(φA) = ∆− k − π + φA
e1 + (1− e1)q1

− (e2 + (1− e2)(1− q2))∆C − lC
(e2 + (1− e2)(1− q2))∆ + lI

[(1− e2)(1− q2)∆ + lI ]

h2(φA) = ∆− (e2 + (1− e2)(1− q2))∆ + lI
(e1 + (1− e1)q1)e2∆

(k − π)

− [e2(1− e1)q1 − e1(1− e2)(1− q2)]∆− e1lI
(e1 + (1− e1)q1)e2∆

φA

h3(φA) = ∆− k − π + φA
e1 + (1− e1)q1

,

and

φ =
(1− e1)q1

e1

[
k − π + (e1 + (1− e1)q1)

[
lC +m+ (1− e2)q2∆C

− (1− x̃(1− e2)(1− q2))∆ + x̃lI
]]

=
(1− e1)q1

e1
[k − π + (e1 + (1− e1)q1)x̃e2∆C ]

φ =
(1− e1)q1

e1
(k − π).
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We again have three regions in (φA, φP ) space. For low fees (region 1), type L

always applies while randomizing over the license fee to charge; for intermediate fees

(region 2), type L always charges the high fee while randomizing over the application

decision. In both cases, type L’s randomization is done such that the competitor is

indifferent between challenging and not. The competitor herself randomizes over the

challenge decision so as to make type L indifferent. For large fees (region 3), type L

does not apply and the competitor does not challenge. The main difference with the

baseline model is that the license fee charged by the low type to avoid a challenge is

now higher, namely, F = lC +m+ (1− e2)q2∆C , reflecting the fact that a challenge is

not guaranteed to be successful even when the competitor is sure of facing a low type.

Similarly, the high type’s profit is now lower than in the baseline because his patent

application can be rejected by the patent office and, if granted, can be invalidated by

the court.

The comparative statics results from the basic model with respect to fees extend in

a straightforward way: an increase in fees leads to (weakly) fewer bad applications (α),

(weakly) higher licence fees (y), and (weakly) fewer challenges (x). With respect to ex-

amination intensity (e1), we continue to have an ambiguous result on bad applications:

as e1 increases, we first move from region 1, where α = 1, to region 2, where

α = α̃ =

(
λ

1− λ

)(
e1 + (1− e1)q1

(1− e1)q1

)(
lC − (1− e2)(1− q2)∆C

(e2 + (1− e2)(1− q2))∆C − lC

)
< 1.

Within region 2, however, an increase in e1 leads to more bad applications, ∂α̃/∂e1 > 0.

Finally, as e1 continues to increase, α drops to zero in region 3. A similar ambiguous

result holds for y. As for the rate of challenges, an increase in e1 (weakly) reduces x.

With the generalized technology, we can also consider the effects of a change in

the quality of the courts, as captured by e2. As e2 increases, the equilibrium moves

from region 1 to region 2 but no further: changes in e2 can never move the equilibrium

to region 3 (this is a manifestation of our results on full screening; see Proposition 9

below). Within region 1, e2 has no effect on α while it decreases x = x̃; the effect on

y is ambiguous. Within region 2, e2 has no effect on y while it continuous to reduce

x = x̂; the effect on α is ambiguous. The ambiguous effect on α = α̃ in region 2 (and

similarly y = ỹ = α̃ in region 1) can be further analyzed as follows. We have

∂α̃

∂e2
=

(
λ

1− λ

)(
e1 + (1− e1)q1

(1− e1)q1

)(
∆C((1− q2)∆C − lC)

((e2 + (1− e2)(1− q2))∆C − lC)2

)
≤ 0

⇔ q2 ≥ 1− lC
∆C

.

Thus, an increase in the quality of the courts leads to fewer bad applications if and

only if q2 is sufficiently large. This result is interesting, as q2 could be interpreted as a

measure of the presumption of validity that the courts apply.
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We now extend our result on the feasibility of full screening. It turns out that

whether full screening can be achieved does not depend on the existence (or quality)

of the courts; it only depends on the patent office’s examination intensity.

Proposition 9. There exists a combination of fees (φA, φP ) inducing full screening if

and only if e1 ≥ ē. For a given e1 ≥ ē, any combination of fees satisfying

(e1 + (1− e1)q1)(∆− φP )− (k − π) ≥ φA ≥ (1− e1)q1(∆− φP ). (36)

achieves full screening.

Proof. By Proposition 8, deterrence of type L (α = 0) requires φA ≥ ((1− e1)q1)(∆−
φP ). Investment by type H when type L is deterred (and thus, in equilibrium, x = 0)

requires (e1 + (1− e1)q1)(∆− φP )− (k − π) ≥ φA. A pre-grant fee φA satisfying both

inequalities exists if and only if (e1+(1−e1)q1)(∆−φP )−(k−π) ≥ ((1−e1)q1)(∆−φP ),

or

e1 ≥
k − π

∆− φP
. (37)

Since the right-hand side increases with φP , the minimum level of e1 required to achieve

full screening is obtained by evaluating (37) at φP = 0, yielding e1 ≥ (k−π)/∆ = ē.

Next, we revisit the result on the welfare-maximizing fee structure when full screen-

ing is not possible (e1 < ē) from Proposition 4. With the generalized screening tech-

nology, the welfare function is

W (α, x, y) = 2π+S−λ
[
(e1+(1−e1)q1)[(1−x(1−e2)(1−q2))D+x(lC+lI)]+k+γ(e1)

]
− (1− λ)α

[
(1− e1)q1

(
[y((1− x) + x(1− e2)q2) + 1− y]D + xy(lC + lI)

)
+ γ(e1)

]
(38)

The threshold e, which is such that region 2 is attainable for e1 > e, is now defined by

(1− e)q1[lC +m+ (1− e2)q2∆C ]

= (e+ (1− e)q1)[(1− x̃(1− e2)(1− q2))∆− x̃lI ]− (k − π). (39)

Proposition 10. If e < e1 < ē and ∆C > (lC/(lC + lI))D, welfare is maximized by

setting φP = 0 and φA such that ΠH = 0.

Proof. The proof proceeds through a series of claims.

Claim 1: W (α, y, x) ≥ W (α′, y′, x) for αy = α′y′ if and only if α ≤ α′. Rewriting

(38) as

W (α, x, y) = 2π+S−λ
[
(e1+(1−e1)q1)[(1−x(1−e2)(1−q2))D+x(lC+lI)]+k+γ(e1)

]
− (1− λ)

[
αxy(1− e1)q1(lC + lI −D) + α

(
(1− e1)q1(1 + x(1− e2)q2)D + γ(e1)

)]
,
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we have, for αy = α′y′,

W (α, x, y)−W (α′, x, y′) = (1− λ)(α′ − α)[(1− e1)q1(1 + x(1− e2)q2)D + γ(e1)] ≥ 0

if and only if α ≤ α′.
Claim 2: (∂/∂x)W (α, x, y)|αy=α̃ < 0 if and only if ∆C > (lC/(lC + lI))D. We have

∂W

∂x
= λ(e1 + (1− e1)q1)[(1− e2)(1− q2)D − (lC + lI)]

+ (1− λ)(1− e1)q1αy[(1− (1− e2)q2)D − (lC + lI)]

=
[
λ(e1 + (1− e1)q1)(1− e2)(1− q2) + (1− λ)(1− e1)q1αy(1− (1− e2)q2)

]
D

−
[
λ(e1 + (1− e1)q1) + (1− λ)(1− e1)q1αy

]
(lC + lI).

Using the definition of λ̂ in (30), we can rewrite this as

∂W

∂x
=
[
λ(e1 + (1− e1)q1) + (1− λ)(1− e1)q1αy

]([
λ̂(1− e2)(1− q2)

+ (1− λ̂)(e2 − (1− e2)(1− q2))
]
D − (lC + lI)

)
.

By Proposition 8, in the equilibrium in regions 1 and 2 (i.e., for αy = α̃) we have

λ̂(1− e2)(1− q2)

+ (1− λ̂)(e2 − (1− e2)(1− q2)) = lC/∆C . Hence,

∂W

∂x
< 0 ⇔ lC

∆C
D − (lC + lI) < 0 ⇔ ∆C >

(
lC

lC + lI

)
D.

Claim 3: x̃ ≥ x̂(φA, φP ) for any (φA, φP ) such that lC+m+(1−e2)q2∆C−φA/((1−
e1)q1) ≤ φP . Since x̂ is decreasing in φA and φP , its maximum x̂max is attained for

lC +m+ (1− e2)q2∆C − φA/((1− e1)q1) = φP . We have

x̂max =
∆C +m− (lC +m+ (1− e2)q2∆C)

(e2 + (1− e2)q2)∆ + lI
=

(e2 + (1− e2)(1− q2))∆C − lC
(e2 + (1− e2)(1− q2))∆ + lI

= x̃.

Hence, x̂(φA, φP ) ≤ x̃ for lC +m+ (1− e2)q2∆C − φA/((1− e1)q1) ≤ φP .

Combining these three claims with the assumption that ∆C > (lC/(lC+lI))D, it fol-

lows that the welfare-maximizing combination of fees solves the following optimization

problem:

min
φA,φP

x̂(φA, φP )

subject to


φP ≥ 0 [µ1]
φA ≥ ((1− e1)q1)[lC +m+ (1− e2)q2∆C − φP ] [µ2]
φP ≤ h(φA) [µ3]

where µ1, µ2, and µ3 are the multipliers associated with the constraints and h(φA)

was defined in the proof of Proposition 8 (recall that φP ≤ h(φA) ⇔ ΠH ≥ 0). The
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first-order conditions with respect to φA and φP are

∂x̂

∂φA
= µ2 + µ3h

′(φA) (40)

∂x̂

∂φP
= µ1 + µ2(1− e1)q1 − µ3. (41)

We now show that at the optimum µ1 > 0 and µ3 > 0 while µ2 = 0, implying φP = 0

and h(φA) = 0 (which is equivalent to ΠH = 0) as claimed.

We start by establishing that h′(φA) < 0 in region 2 when e < e1 < ē (which holds

by assumption). Note first that h(φA) = h2(φA) in region 2, and hence that

h′(φA) = h′2(φA) = − [e2(1− e1)q1 − e1(1− e2)(1− q2)]∆− e1lI
(e1 + (1− e1)q1)e2∆

, (42)

which is negative if and only if [e2(1− e1)q1 − e1(1− e2)(1− q2)]∆ > e1lI . Next, note

that e1 > e implies that h(φ) > 0: by definition of φ,

h1(φ) = (1− x̃(1− e2)(1− q2))∆− x̃lI −
k − π + φ

e1 + (1− e1)q1

= lC +m+ (1− e2)q2∆C −
φ

(1− e1)q1
.

Replacing φ on the right-hand side we have that

h(φ) = h1(φ) = lC +m+ (1− e2)q2∆C −
e1 + (1− e1)q1

e1

[
lC +m+ (1− e2)q2∆C

− (1− x̃(1− e2)(1− q2))∆ + x̃lI +
k − π

e1 + (1− e1)q1

]
> 0,

or

(1−e1)q1[lC+m+(1−e2)q2∆C ] < (e1+(1−e1)q1)[(1−x̃(1−e2)(1−q2))∆−x̃lI ]−(k−π)

⇔ e1 > e.

Next, replacing φ in h1(φ) yields

h1(φ) = ∆− k − π
e1 + (1− e1)q1

− x̃[(1− e2)(1− q2)∆ + lI ]

− (1− e1)q1

e1(e1 + (1− e1)q1)
[k − π − (e1 + (1− e1)q1)x̃e2∆]

= ∆− k − π
e1

+
x̃

e1
[(e2(1− e1)q1 − e1(1− e2)(1− q2))∆− e1lI ].

Since ∆− (k − π)/e1 < 0 by the assumption that e1 < ē and we have just established

that h1(φ) > 0 when e1 > e, it must be that (e2(1− e1)q1− e1(1− e2)(1− q2))∆ > e1lI ,

and hence that h′(φA) < 0.
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Combining h′(φA) < 0 with the fact that ∂x̂/∂φA < 0, (40) implies µ3 > 0. Using

(40) to replace µ2 in (41), we have

µ1 =
∂x̂

∂φP
− (1− e1)q1

(
∂x̂

∂φA
− µ3h

′(φA)

)
.

Noting that ∂x̂/∂φP = (1 − e1)q1∂x̂/∂φA and substituting for h′(φA) from (42), we

obtain

µ1 = µ3

[
1− [e2(1− e1)q1 − e1(1− e2)(1− q2)]∆− e1lI

(e1 + (1− e1)q1)e2∆

]
= µ3

e1[(e2 + (1− e2)(1− q2))∆ + lI ]

(e1 + (1− e1)q1)e2∆
> 0.

We conclude that φP = 0 and h(φA) = φP = 0 at the optimum.

As Proposition 10 shows, our results on the welfare-maximizing structure of fees

are robust to the introduction of patent office and court errors.

Appendix C Simulations

C.1 Homogeneous-good Cournot model with two-sided litigation costs

We assume a linear inverse demand: P (Q) = a−Q where Q = qI + qC . The invention

reduces unit production cost from c to c′ = (1− s)c where s ∈ (0, 1).

Let q(ci, cj) denote the Cournot equilibrium output when firm i’s cost is ci and its

rival’s cost is cj . We have

q(ci, cj) =
a− 2ci + cj

3
.

Let πI(r) and πC(r) denote the inventor’s and competitor’s equilibrium profits, respec-

tively, when the competitor accepts a royalty rate of r. We have

πI(r) = [a− q(c′, c′ + r)− q(c′ + r, c′)− c′]q(c′, c′ + r) + rq(c′ + r, c′)

πC(r) = [a− q(c′, c′ + r)− q(c′ + r, c′)− c′ − r]q(c′ + r, c′)

Note that πI(0) = πC(0) = (a−c
′

3 )2. Moreover, it can be shown that

πI(r) = πI(0) + 5δ(r)

πC(r) = πC(0)− 4δ(r),

where

δ(r) ≡ 1

9
r(a− (1− s)c− r).

Notice that this implies

4[πI(r)− πI(0)] = 5[πC(0)− πC(r)]. (43)
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In region 1, the type-L inventor proposes a royalty rH with probability y and a

royalty rL with probability 1 − y, while the competitor challenges with probability x

when being offered the high royalty rate rH . Let us first determine rH and rL. rH is

the royalty charged by the type-H inventor, namely rH = sc (Fauli-Oller and Sandonis,

2002). We then have

πI(rH)− πI(0) =
5

9
(a− c)sc = ∆.

rL must be such that the competitor is indifferent between challenging and not, given

that the inventor is sure to be bad. That is, rL solves

πC(0)− lC = πC(rL).

Then, (43) implies

πI(rL)− πI(0) =
5

4
[πC(0)− πC(rL)] =

5

4
lC .

Solving explicitly for rL yields

rL =
1

2

[
a− (1− s)c−

√
(a− (1− s)c)2 − 9lC

]
.

With these expressions, we can compute the cost of the patent to the competitor,

∆C = πC(0)− πC(rH) = 4
9(a− c)sc, and the incremental profit from monopoly power

via royalty licensing, which (in the Cournot model) depends on whether the high or

low royalty is charged. With a slight abuse of notation, we denote by m(∆C) the

incremental profit when rH is charged and by m(lC) the incremental profit when rL is

charged. We have

m(∆C) = ∆−∆C = πI(rH)− πI(0)− (πC(0)− πC(rH)) =
1

9
(a− c)sc =

1

4
∆C

m(lC) = πI(rL)− πI(0)− (πC(0)− πC(rL) =
1

4
lC .

Thus, for z ∈ {∆C , lC}, m(z) = 1
4z.

Also note that the price elasticity, evaluated at the equilibrium with rH is given by

η = − a+ (2− s)c
2a− (2− s)c

.

C.2 Embedding the theoretical model into a Cournot setting

We next determine x. The competitor chooses x so as to make the type-L inventor

indifferent between rH and rL. Note that, in the event of a challenge, the L type’s

patent will be invalidated; hence the royalty rate will be r = 0 and his profit πI(0).

Thus x solves

πI(rL) = x[πI(0)− lI ] + (1− x)πI(rH).
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Solving for x and plugging in the values computed above we obtain

x =
∆C +m(∆C)− (lC +m(lC))

∆C +m(∆C) + lI
=

(5/4)[∆C − lC ]

(5/4)∆C + lI
=

4(a− c)sc− 9lC
4(a− c)sc+ (36/5)lI

.

Finally, we determine y. The low type inventor chooses y so as to make the com-

petitor indifferent between challenging and not when observing rH :

λ̂πC(rH) + (1− λ̂)πC(0)− lC = πC(rH),

which yields

(1− λ̂)[πC(0)− πC(rH)] = lC

where

λ̂ =
λ

λ+ (1− λ)(1− e)y
.

is the competitor’s posterior probability that the patent is of type H. Note that be-

cause the competitor’s belief is correct in equilibrium, λ̂ is also the probability that

a challenged patent is upheld by courts, and thus equals the patentee win rate (V R).

Since ∆C = πC(0)− πC(rH) we can write

λ̂ =
∆C − lC

∆C
= V R.

We thus have

λ̂ = 1− 9lC
4(a− c)sc

.

Using the two equations for λ̂ and solving for y yields

y =
λ

1− λ
9lC

(1− e)(4(a− c)sc− 9lC)
.

With these results, we can express the challenge credibility constraint as(
1− λ

λ+ (1− λ)(1− e)

)
4

9
(a− c)sc ≥ lC .

For each simulation run, we confirm that the output (a, c, lC , λ, e) satisfies this con-

straint.

The grant rate is

GR = λ+ (1− λ)(1− e)

and the observed litigation rate is

LR =
x[λ+ (1− λ)(1− e)y]

λ+ (1− λ)(1− e)
=

xλ

GR λ̂
.

Assuming identical litigation costs, lI = lC , and using the fact that, in equilibrium,

lC = (1− λ̂)∆C , we can simplify the expression for x as

x =
5λ̂

9− 4λ̂
.
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Plugging this into LR, using λ̂ = V R, and solving for λ yields

λ =
LR ·GR(9− 4V R)

5
.

Finally, from the grant rate equation we then obtain e as

e = 1− GR− λ
1− λ

=
5(1−GR)

5− LR ·GR(9− 4V R)
.

R&D Equation

Expected returns to innovation relative to no invention for types L and H are:

ΠH = πI(rH)− xlI − φA − φP − πNII

ΠL = eπI(0) + (1− e)
[
y(xπI(0) + (1− x)πI(rH)) + (1− y)πI(rL)− xylI − φP

]
− φA − πNII .

Setting observed R&D expenditures, R (including a rate of return) equal to expected

returns to innovation:

(1 + τ)R = λΠH + (1− λ)ΠL,

where τ is the private rate of return to R&D, estimated by Bloom, Schankerman and

Van Reenen (2013) at 0.25.

Given the earlier analysis, the right hand side of this equation can be expressed as a

function of (l, a, c, λ, s, η, V R,GR).

C.3 Computing investment costs, R&D and welfare

Note that K = λκH +(1−λ)κL, where K denotes observed investment expenditure per

patent application. In the model we normalize κL = 0 but for the simulations we need

estimates of both κL and κH . To obtain these, we exploit the following relationships:

κH =
K − (1− λ)κL

λ

and

κL ≤ πI(0)− πNII ≤ κH ≤ πI(rH)− xlI − φA − φP − πNII

where πI(0) is Cournot profit for the innovator if there is no patent (zero royalty),

πI(rH) is innovator profit at the high royalty and πNII is profit if there is no cost-

reducing invention (the outside option payoff). The first equation defines a locus of

(κL, κH) consistent with observed total development cost. The first two inequalities in

the second equation say that low type inventions would be developed without patent

protection but high types would not. The last inequality ensures that there is sufficient
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incentive with a patent to develop the high type. Among all (κL, κH) on the locus that

satisfy the inequalities, we use the average. Nothing of substance changes if we use

other feasible values.

Finally, to compute welfare, note that industry output in equilibrium is

Q(ci, cj) = q(ci, cj) + q(cj , ci) =
2(a− c′)− r

3
.

Hence, consumer surplus, as a function of the royalty rate r, is

CS(r) =
1

2

(
2(a− c′)− r

3

)2

.

Let w(r) = πI(r) + πC(r) + CS(r). Then, expected total welfare is

W = λ
[
w(rH)− x(lC + lI)− γ(e)− κH

]
+ (1− λ)

[
α
[
ew(0) + (1− e)

(
y(xw(0) + (1− x)w(rH)) + (1− y)w(rL)

− xy(lC + lI)
)
− γ(e)

]
+ (1− α)w(0)− κL

]
.

C.4 Calibration

Examination cost per patent application, γ(e)

We assume constant returns to scale in examination intensity per application, e : γ(e) =

ψe. Given the simulated value of e, say ê, we compute the unit cost ψ using the

examination/search cost per patent reported by the USPTO as $3,660. Hence ψ =
3660
ê , and in percentage-point terms, MCE = ψ/100. For each policy experiment, we

use the new simulated examination intensity, e∗, and then compute the counterfactual

cost of processing an application as γ(e∗) = ψe∗.

Pre-grant (application) fees, φA

Patent office pre-grant fees include filing, search, examination and processing fees.

This yields φA = $1, 740 (www.uspto.gov/learning-and-resources/fees-and-payment/

uspto-fee-schedule). We exclude filing fees for excess independent claims (above three)

and total claims (above 20) because the average numbers of claims fall below these

thresholds (Dennis Crouch, “The Rising Size and Complexity of the Patent Docu-

ment,” University of Missouri School of Law, http://dx.doi.org/10.2139/ssrn.1095810).

We also include the the cost of preparing the patent application. External estimates

(www.ipwatchdog.com/2015/the-cost-of-obtaining-a-patent-in-the-us) fall in the range

$10, 000−$20, 000. We use $15,000 as the baseline, but results are very similar for other

values in the range.

Post-grant (activation) fees, φP

To compute post-grant fees, we include the issuance fee and (large entity) maintenance
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fees at ages 4, 8 and 12 (www.uspto.gov/learning-and-resources/fees-and-payment/

uspto-fee-schedule). Assuming maintenance to full term, the computed post-grant

fees (ignoring discounting) are φP = $13, 560. We do not include fees for ex parte

re-examination, supplemental examination or various appeals.

R&D per patent, R

The worldwide R&D expense per patent application in 2008 is reported as $2.4 mil-

lion (InfoBrief NSF13-207, National Center for Science and Engineering Statistics,

U.S. National Science Foundation). We use this figure as the baseline, but simulation

results are similar using $2, 3 and 4 million.

Investment cost, K

We obtain the fraction of private R&D costs accounted for by development expen-

ditures, taken from annual U.S. National Science Foundation surveys (www.nsf.gov/

statistics/2016/nsf16301/pdf/tab17.pdf). We take the average value of this ratio for

the period 1995-2000, which is 0.80, and multiply it by the R&D per patent as described

above.

Litigation rate

The litigation rate is set at 0.015, computed as the ratio of patent suits to the total

number of patent grants (Lemley, 2001). However, studies of renewal data show that

most patents have very little value, and thus are unlikely to satisfy the challenge credi-

bility constraint in the model. Thus we adjust the overall litigation rate to correspond

to those patents that satisfy this constraint in order to compute LR used in the simula-

tions. To do this, we compute the minimum value that satisfies the constraint, denoted

by ∆∗C , given an assumption on the minimum litigation costs lmin. That is, ∆∗C solves:(
1− λ

λ+ (1− λ)(1− e)

)
∆∗C = lmin.

Substituting for λ and e derived in Appendix C.2, we can express ∆∗C as

∆∗C(p) =
5lmin

4
(

1− 0.015(9−4V R)
5(1−p)

)
where p is the percentile of the lognormal distribution of the value of patent rights

that corresponds to ∆∗C . We can therefore solve for p.37 Then we compute the relevant

litigation rate for patents that satisfy the challenge credibility constraint in the model

37To solve for p, we use the estimated parameters of the lognormal distribution of the value of patent
rights for Germany (Schankerman and Pakes, 1986), rescaled for inflation and relative values of GDP
of the U.S. and Germany for 2014 (in this we assume that the value of patent rights is proportional to
GDP, which is roughly consistent with the findings in their paper). Details are available on request.
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as LR = 0.015
p . In the baseline simulations with perfect courts, we find p = 0.107 and

thus LR = 0.14. For the simulations with imperfect courts it is very similar.

We set lmin = $350, 000, which is the minimum litigation cost to the end of discovery

for cases where the value at stake is less than $1 million, as reported by the American

Intellectual Property Law Association (2011).

Validation rate

We use the fraction of patent challenge cases in which the validity of the patent

is upheld by the court, taken from Allison, Lemley and Schwartz (2014). Using all

cases filed in U.S. district courts for 2008-09 (decided 2009-13), they compute that the

challenger wins in about 43% of the invalidity suits. As an approximation, we set the

validation rate at 0.60.

Grant rate

The patent grant rate is measured by the number of patent grants divided by the

number of applications (including continuation and divisional filings). Carley, Hegde

and Marco (2015) compute this grant rate over the period 1996-2005, which they refer

to as the ‘family allowance rate’. We set the grant rate at 0.75, which is roughly the

average over the period 1991-2000.

C.5 Imperfect courts

In this section we extend the Cournot model to a setting with imperfect courts. We

consider a special case of the generalized screening technology introduced in Appendix

B where e1 = e, e2 = β + (1 − β)e with β ∈ [0, 1], q1 = 1, and q2 = λ̂. That is, the

courts are more accurate than the patent office (the higher β, the closer the courts are

to being perfect), and while the patent office accepts all applications for which it does

not find evidence either way, the courts apply a presumption of validity that depends

on what happens at the previous stages: if no evidence is found by the court, patents

are held valid with probability λ̂, which corresponds to the Bayesian posterior that the

inventor is of type H. In region 1, we have

λ̂ =
λ

λ+ (1− λ)(1− e1)y
. (44)

Thus (in region 1) q2 depends endogenously on e1, λ and y.

The high royalty rate charged by the type-H inventor continues to be rH = sc.

The low royalty rate rL, which must be such that the competitor is indifferent between

challenging and not given that the inventor is sure to be bad, now solves

(1− e2)λ̂πC(rH) + (e2 + (1− e2)(1− λ̂))πC(0)− lC = πC(rL).
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Subtracting πC(0) from both sides and rearranging, we obtain

πC(0)− πC(rL) = lC + (1− e2)λ̂[πC(0)− πC(rH)]

= lC + 4(1− e2)λ̂δ(rH)

= lC +
4

9
(1− e2)λ̂(a− c)sc.

Then, (43) implies

πI(rL)− πI(0) =
5

4
[πC(0)− πC(rL)] =

5

4
lC +

5

9
(1− e2)λ̂(a− c)sc.

One can solve explicitly for rL, yielding

rL =
1

2

[
a− (1− s)c−

√
(a− (1− s)c)2 − 4(1− e2)λ̂(a− c)sc− 9lC

]
.

Thus, for any e2 < 1, rL is higher than in the baseline model, where e2 = 1. Intuitively,

the low type can ask for a higher royalty because the competitor is not sure to win in

court even when she is sure of facing a low type.

Now let us determine x. The competitor chooses x so as to make the bad type of

inventor indifferent between rH and rL. Note that, in the event of a challenge, the

low type’s patent is upheld with probability (1− e2)λ̂ and invalidated with probability

(e2 + (1− e2)(1− λ̂)), while the high type’s patent is upheld with probability (e2 + (1−
e2)λ̂) and invalidated with probability (1− e2)(1− λ̂). Thus x solves

πI(rL) = x
[
(1− e2)λ̂πI(rH) + (e2 + (1− e2)(1− λ̂))πI(0)− lI

]
+ (1− x)πI(rH).

Subtracting πI(0) from both sides yields

πI(rL)− πI(0) = x
[
(1− e2)λ̂[πI(rH)− πI(0)]− lI

]
+ (1− x)[πI(rH)− πI(0)].

Solving for x and plugging in the values computed above we obtain

x =
πI(rH)− πI(0)− [πI(rL)− πI(0)]

(1− (1− e2)λ̂)[πI(rH)− πI(0)] + lI

=
5
9(1− (1− e2)λ̂)(a− c)sc− 5

4 lC
5
9(1− (1− e2)λ̂)(a− c)sc+ lI

.

Finally, let us determine y. The low type of inventor chooses y so as to make the

competitor indifferent between challenging and not when observing rH . That is, y

solves

λ̂
[
(e2 + (1− e2)λ̂)πC(rH) + (1− e2)(1− λ̂)πC(0)

]
+ (1− λ̂)

[
(1− e2)λ̂πC(rH) + (e2 + (1− e2)(1− λ̂))πC(0)

]
− lC = πC(rH)
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⇔
[
(1− e2)(1− λ̂) + e2(1− λ̂)

]
[πC(0)− πC(rH)] = (1− λ̂)[πC(0)− πC(rH)] = lC ,

which is the same expression as in the baseline model. We have

πC(0)− πC(rH) =
4

9
(a− c)sc.

Thus, in equilibrium

λ̂ = 1− 9lC
4(a− c)sc

. (45)

Using (44) to solve for y yields

y =
λ

1− λ
9lC

(1− e1)(4(a− c)sc− 9lC)
.

The challenge credibility constraint becomes

λ
[
(e2 + (1− e2)λ)πC(rH) + (1− e2)(1− λ)πC(0)

]
+ (1− λ)

[
(1− e2)λπC(rH) + (e2 + (1− e2)(1− λ))πC(0)

]
− lC ≥ πC(rH)

⇔ (1− λ)
4

9
(a− c)sc ≥ lC ,

where

λ =
λ

λ+ (1− λ)(1− e1)
.

Inferring λ and e from V R, GR, and LR.

The validation rate is

V R = λ̂[e2 + (1− e2)λ̂] + (1− λ̂)(1− e2)λ̂ = λ̂.

The grant rate is

GR = λ+ (1− λ)(1− e1).

The litigation rate is

LR =
x[λ+ (1− λ)(1− e1)y]

λ+ (1− λ)(1− e1)
=

xλ

GR · λ̂
.

Using lI = lC , lC = (1− λ̂)4
9(a− c)sc, e1 = e, e2 = β + (1− β)e, and V R = λ̂, we can

write

x =
5
9(1− (1− β)(1− e)V R)(a− c)sc− 5

9(1− V R)(a− c)sc
5
9(1− (1− β)(1− e)V R)(a− c)sc+ 4

9(1− V R)(a− c)sc

=
5V R(1− (1− β)(1− e))

9− V R(5(1− β)(1− e) + 4)
.

Substituting for x and λ̂ in the litigation rate equation yields

LR =
5λ(1− (1− β)(1− e))

GR[9− V R(5(1− β)(1− e) + 4)]
.

Together with the grant rate equation (replacing e1 = e), this can be used to determine

e and λ.
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